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What is LITMUSRT?

A real-time extension of the Linux kernel.
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What is LITMUSRT?

Linux kernel patch

+
user-space interface

+
tracing infrastructure
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What is LITMUSRT?

Linux kernel patch

+
user-space interface

+
tracing infrastructure

{RT schedulers
RT synchronization
[cache & GPU]

{C API
device files
scripts & tools
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schedules
kernel debug log
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Mission

8

Enable practical multiprocessor real-time 
systems research under realistic conditions.
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Mission

Efficiently…
➡ enable apples-to-apples comparison  

with existing systems (esp. Linux)

…support real applications…
➡ I/O, synchronization, legacy code

…on real multicore hardware…
➡ Realistic overheads on commodity 

platforms.

…in a real OS.
➡ Realistic implementation 

constraints and challenges.

9

Enable practical multiprocessor real-time 
systems research under realistic conditions.

practical and realistic:
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Going from this…

“At any point in time, the 
system schedules the m highest-
priority jobs, where a job’s 
current priority is given by…”



… to this!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
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Why You Should Be Using LITMUSRT

If you are doing kernel-level work anyway…
➡ Get a head-start — simplified kernel interfaces, debugging 

infrastructure, user-space interface, tracing infrastructure
➡ As a baseline — compare with schedulers in LITMUSRT

If you are developing real-time applications…
➡ Get a predictable execution environment with “textbook 

algorithms” matching the literature
➡ Understand kernel overheads with just a few commands!

If your primary focus is theory and analysis…
➡ To understand the impact of overheads.
➡ To demonstrate practicality of proposed approaches.

12
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Theory vs. Practice

Why is implementing “textbook” schedulers difficult?

Besides the usual kernel fun:  
restricted environment, special APIs, difficult to debug, …
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Scheduling in Theory

=Scheduling

Algorithm

CPU 1

CPU 2

CPU m

…

Scheduler: a function that, at each point 
in time, maps elements from the set of 
ready jobs onto a set of m processors.

Ready Queue
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Scheduling in Theory

Global policies based on global state
➡E.g., “At any point in time, the m highest-priority...”

Sequential policies, assuming total order of events.
➡E.g., “If a job arrives at time t…”

15

=Scheduling

Algorithm

CPU 1

CPU 2

CPU m

…

Scheduler: a function that, at each point 
in time, maps elements from the set of 
ready jobs onto a set of m processors.

Ready Queue
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Scheduling in Theory

current event

CPU 1 CPU 2 CPU m…

=Scheduling

Algorithm

CPU 1

CPU 2

CPU m

…

Practical scheduler: job assignment changes only in response to
well-defined scheduling events (or at well-known points in time).

Ready Queue
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Scheduling in Practice

event 1

CPU 1

CPU 2

CPU m

…

schedule() CPU 1

CPU 2

CPU m

…

schedule()

event 2

event m

schedule()

…

Ready 
Queue
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Scheduling in Practice

Each processor schedules only itself locally.
➡ Multiprocessor schedulers are parallel algorithms.
➡ Concurrent, unpredictable scheduling events!
➡ New events occur while making decision!
➡ No globally consistent atomic snapshot for free!

18
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Original Purpose of LITMUSRT
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History — The first Ten Years
Releases
[RTSS’06]

2007.1
2007.2
2007.3
2008.1
2008.2
2008.3
2010.1
2010.2
2011.1
2012.1
2012.2
2012.3
2013.1
2014.1
2014.2
2015.1
2016.1

Calandrino et al. (2006)
[not publicly released]

[2011– ]

[2006–2011]

Project initiated by Jim Anderson (UNC);  
first prototype implemented by
John Calandrino, Hennadiy Leontyev, 
Aaron Block, and Uma Devi.

Graciously supported over the years by: 
NSF, ARO, AFOSR, AFRL, and Intel, Sun, 
IBM, AT&T, and Northrop Grumman Corps.

Thanks!
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History — The first Ten Years

Continuously maintained
➡ reimplemented for 2007.1
➡ 17 major releases spanning 

40 major kernel versions  
(Linux 2.6.20 — 4.1)

Impact
➡ used in about 50 papers,  

and 7 PhD & 3 MSc theses
➡ several hundred citations
➡ used in South & North 

America, Europe, and Asia

21

Releases
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Goals and Non-Goals
Goal: Make life easier for real-time systems researchers 
➡ LITMUSRT always was, and remains, a research vehicle
➡ encourage systems research by making it more approachable

Goal: Be sufficiently feature complete & stable to be practical
➡ no point in evaluating systems that can’t run real workloads

Non-Goal: POSIX compliance
➡ We provide our own APIs — POSIX is old and cumbersome.

Non-Goal: API stability
➡ We rarely break interfaces, but do it without hesitation if needed.

Non-Goal: Upstream inclusion
➡ LITMUSRT is neither intended nor suited to be merged into Linux.

22
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Partitioned vs. Clustered vs. Global
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real-time multiprocessor scheduling approaches
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Predictable Real-Time Schedulers
Matching the literature!

Global EDF

Partitioned EDF

Clustered EDF

Pfair (PD2)

Partitioned Fixed-Priority (FP)

Partitioned Reservation-Based
polling + table-driven

maintained in mainline LITMUSRT
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Predictable Real-Time Schedulers
Matching the literature!

Global EDF

Partitioned EDF

Clustered EDF

Pfair (PD2)

Partitioned Fixed-Priority (FP)

Partitioned Reservation-Based
polling + table-driven

Global FIFO
Global FPRUN

QPS

EDF-fm
EDF-WM NPS-F

EDF-C=D

maintained in mainline LITMUSRT

CBS
Sporadic Servers

CASH

EDF-HSB

Global & Clustered Adaptive EDF

soft-polling slack sharing

…

Global Message-Passing EDF &FP
Strong Laminar APA  FP

MC2

external branches & patches /
paper-specific prototypes

slot shifting
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Easily Compare Your Work

Bottom line:
➡ The scheduler that you need might already be available.

(Almost) never start from scratch:
➡ If you need to implement a new scheduler, there likely 

exists a good starting point (e.g., of similar structure).

Plenty of baselines:
➡ At the very least, LITMUSRT can provide you with 

interesting baselines to compare against.

27
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Predictable Locking Protocols
Matching the literature!

MPCP

DPCP
DFLP

Global OMLP

OMIP

FMLP+

Clustered OMLP

SRP

PCP

MPCP-VS

non-preemptive spin locks k-exclusion locks

RNLP

MBWI
MC-IPC

maintained in mainline LITMUSRT external branches & patches /
paper-specific prototypes

…
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Lightweight Overhead Tracing

minimal static trace points

+
binary rewriting (jmp ↔ nop)

+
per-processor, wait-free buffers
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Evaluate Your Workload with Realistic Overheads
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G-EDF: measured context-switch overhead for 3 tasks per processor (host=ludwig)
min=0.62us  max=37.74us  avg=5.52us  median=5.31us  stdev=2.10us

samples: total=560087 filtered=105 (0.02%)
IQR: extent=12 threshold=37.80us
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P-EDF: measured context-switch overhead for 3 tasks per processor (host=ludwig)
min=0.63us  max=44.59us  avg=5.70us  median=5.39us  stdev=2.39us

samples: total=560087 filtered=14 (0.00%)
IQR: extent=12 threshold=46.30us
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P-EDF: measured job release overhead for 3 tasks per processor (host=ludwig)
min=0.27us  max=23.54us  avg=5.48us  median=4.93us  stdev=2.72us

samples: total=152059
[IQR filter not applied]

Partitioned EDF
job release overhead

[72 tasks, 24 cores]
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G-EDF: measured job release overhead for 3 tasks per processor (host=ludwig)
min=1.75us  max=291.17us  avg=62.05us  median=43.40us  stdev=52.43us

samples: total=152059
[IQR filter not applied]

Global EDF
job release overhead

[72 tasks, 24 cores]

Global EDF
context-switch overhead

[72 tasks, 24 cores]

Partitioned EDF
context-switch overhead

[72 tasks, 24 cores]

Note the scale!



Enter event or section title

MPI-SWS 31

Automatic Interrupt Filtering

measured activitystart timestamp end timestamp

Overhead tracing, ideally:

With outliers:

start timestamp end timestampISR

noise due to untimely interrupt



MPI-SWS

Automatic Interrupt Filtering

How to cope?
➡ can’t just turn off interrupts
➡ Used statistical filters…
‣…but which filter?
‣… what if there are true 

outliers?

Since LITMUSRT 2012.2:
➡ ISRs increment counter
➡ timestamps include 

counter snapshots & flag
➡ interrupted samples 

discarded automatically
32

measured activitystart timestamp end timestamp

Overhead tracing, ideally:

With outliers:

start timestamp end timestampISR

noise due to untimely interrupt
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Cycle Counter Skew Compensation

start timestamp

end timestamp

Tracing inter-processor interrupts (IPI):

Core 1

Core 27

… IPI
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Cycle Counter Skew Compensation

start timestamp

end timestamp

Tracing inter-processor interrupts (IPI), with non-aligned clock sources:

Core 1

Core 27

… IPI1000

990
IPI received before it was sent!?

[➞ overflows to extremely large outliers]
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Cycle Counter Skew Compensation

start timestamp

end timestamp

Tracing inter-processor interrupts (IPI), with non-aligned clock sources:

Core 1

Core 27

… IPI1000

990
IPI received before it was sent!?

[➞ overflows to extremely large outliers]

In LITMUSRT, simply run ftcat -c to measure and automatically 
compensate for unaligned clock sources.
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Lightweight Schedule Tracing
task parameters 

+
context switches & blocking

+
job releases & deadlines & completions

Built on top of:



Enter event or section title

MPI-SWS 37

Schedule Visualization: st-draw
Ever wondered what a Pfair schedule looks like in reality?
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Schedule Visualization: st-draw
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Ever wondered what a Pfair schedule looks like in reality?
Easy! Just record the schedule with sched_trace and run st-draw!

Note: this is real execution data from a 4-core machine,
           not a simulation! [Color indicates CPU identity].
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Easy Access to Workload Statistics
combining multiple wait queues, which are readily available
in Linux. Most complexity stems from the need to coordinate
scheduling decisions across cluster boundaries when a job is
eligible to be scheduled in multiple clusters due to migratory
priority inheritance. In particular, if a processor decides to
not schedule a lock-holding job J

l

because it observes that
J
l

is already scheduled in another cluster, the processor must
be notified if J

l

is subsequently preempted. In our prototype,
this is realized with a per-semaphore bitmask that tracks on
which processors a job holding the semaphore may currently
be scheduled, and by sending an inter-processor interrupt
(IPI) to available processors when a lock-holder preemption
occurs. A migration, if possible, is then carried out by the
first available processor to reschedule in response to the IPI.
A detailed discussion of the implementation is omitted here
due to space constraints; however, our changes are publicly
available as a patch on the LITMUSRT homepage [1].

5.1 Response-Time Measurements

Based on LITMUSRT, we conducted an experiment to em-
pirically demonstrate that the OMIP is effective at protecting
latency-sensitive tasks, that is, to rule out the possibility that
independence-preservation is merely an “analytical trick”
without practical impact. To this end, we configured a sim-
ple synthetic task set on a 2.0 GHz Intel Xeon X7550 system
with m = 8 cores using the modified LITMUSRT C-EDF
plugin with clusters defined by the L1 cache topology, which
results in P-EDF scheduling (c = 1) on the test platform.

On each core, we launched four tasks with periods 1ms ,
25ms , 100ms , and 1000ms and execution costs of roughly
0.1ms , 2ms , 15ms , and 600ms , resp. The latency-sensitive,
one-millisecond tasks did not access any shared resources.
All other tasks shared a single lock with an associated maxi-
mum critical section length of approximately Lmax

= 1ms ,
and each of their jobs acquired the lock once. While the
task set is synthetic, the chosen parameters are inspired by
the range of periods found in automotive systems [16, 37]
and we believe them to be a reasonable approximation of
heterogenous timing constraints as they arise in practice.

We ran the task set once using the C-OMLP, once us-
ing the OMIP, and once using no locks at all (as a base-
line assuming that all tasks are independent) for 30 minutes
each. We traced the resulting schedules using LITMUSRT’s
sched trace facility and recorded the response times of
more than 45, 000, 000 individual jobs. Fig. 3 shows two his-
tograms of recorded response times under each configuration.
Fig. 3(a) depicts response times of the one-millisecond tasks.
Due to the short period (and consistent deadline tie-breaking),
their jobs always have the highest priority and thus incur no
delays at all in the absence of locks (all response times are
in the first bin). In contrast, under the C-OMLP, jobs are not
protected from pi-blocking due to unrelated critical sections
and response times exceeding 8ms were observed—priority
boosting causes deadline misses in latency-sensitive tasks
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(a) Response times of latency-sensitive tasks with period pi = 1ms .
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(b) Response times of regular tasks with period pi = 100ms .

Figure 3: Response times measured in LITMUSRT under C-EDF
scheduling with the OMIP, the C-OMLP, and without locks.

(not coincidentally, 8ms ⇡ m · Lmax ). Not so under the
OMIP, where the response-times are identical to the case
without locks—task independence was indeed preserved.

However, mutual exclusion invariably causes some delays,
and if such delays do not manifest in the highest-priority
jobs, then they will be necessarily observable elsewhere.
This is apparent in Fig. 3(b), which depicts the response-
time distribution of the 100ms-tasks. For these tasks with
considerable slack, worst-case response-times are notice-
ably shorter under the C-OMLP than under the OMIP. This
emphasizes that there is an obvious tradeoff between not pe-
nalizing higher-priority jobs and rapidly completing critical
sections. To explore this tradeoff, we conducted schedula-
bility experiments, which allow analytical differences w.r.t.
response-time guarantees to be quantified (as opposed to the
differences in observed response times discussed so far).

5.2 Schedulability Experiments

In preparation, we derived and implemented fine-grained
(i.e., non-asymptotic) pi-blocking analysis of the OMIP suit-
able for schedulability analysis based on a recently developed
analysis technique using linear programming [11]; details
can be found online [10]. To quantify each protocol’s impact
on schedulability, we generated task sets using Emberson
et al.’s method [22] consisting of n 2 {20, 30, 40} tasks with
total utilization U 2 {0.4m, 0.5m, 0.7m}. Of the n tasks,
nlat 2 {0, 1, . . . , 8} were chosen to be latency-sensitive.
Latency-sensitive tasks were assigned a period randomly cho-
sen from [0.5ms, 2.5ms], and regular tasks were assigned

9

“We traced the resulting schedules using LITMUSRT’s 
sched_trace facility and recorded the response times of more 
than 45,000,000 individual jobs.”

[—, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, ECRTS’13]
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Easy Access to Workload Statistics
“We traced the resulting schedules using LITMUSRT 
sched_trace facility and recorded the response times of more 
than 45,000,000 individual jobs.”

[—, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, ECRTS’13]

(1) st-trace-schedule my-ecrts13-experiments-OMIP 
    […run workload…] 

(2) st-job-stats *my-ecrts13-experiments-OMIP*.bin 
# Task,   Job,     Period,   Response, DL Miss?,   Lateness,  Tardiness, Forced?,       ACET 
# task NAME=rtspin PID=29587 COST=1000000 PERIOD=10000000 CPU=0 
 29587,     2,   10000000,       1884,        0,   -9998116,          0,       0,       1191 
 29587,     3,   10000000,    1019692,        0,   -8980308,          0,       0,    1017922 
 29587,     4,   10000000,    1089789,        0,   -8910211,          0,       0,    1030550 
 29587,     5,   10000000,    1034513,        0,   -8965487,          0,       0,    1016656 
 29587,     6,   10000000,    1032825,        0,   -8967175,          0,       0,    1016096 
 29587,     7,   10000000,    1037301,        0,   -8962699,          0,       0,    1016078 
 29587,     8,   10000000,    1033699,        0,   -8966301,          0,       0,    1016535 
 29587,     9,   10000000,    1037287,        0,   -8962713,          0,       0,    1015794 
…
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Easy Access to Workload Statistics
“We traced the resulting schedules using LITMUSRT 
sched_trace facility and recorded the response times of more 
than 45,000,000 individual jobs.”

[—, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, ECRTS’13]

(1) st-trace-schedule my-ecrts13-experiments-OMIP 
    […run workload…] 

(2) st-job-stats *my-ecrts13-experiments-OMIP*.bin 
# Task,   Job,     Period,   Response, DL Miss?,   Lateness,  Tardiness, Forced?,       ACET 
# task NAME=rtspin PID=29587 COST=1000000 PERIOD=10000000 CPU=0 
 29587,     2,   10000000,       1884,        0,   -9998116,          0,       0,       1191 
 29587,     3,   10000000,    1019692,        0,   -8980308,          0,       0,    1017922 
 29587,     4,   10000000,    1089789,        0,   -8910211,          0,       0,    1030550 
 29587,     5,   10000000,    1034513,        0,   -8965487,          0,       0,    1016656 
 29587,     6,   10000000,    1032825,        0,   -8967175,          0,       0,    1016096 
 29587,     7,   10000000,    1037301,        0,   -8962699,          0,       0,    1016078 
 29587,     8,   10000000,    1033699,        0,   -8966301,          0,       0,    1016535 
 29587,     9,   10000000,    1037287,        0,   -8962713,          0,       0,    1015794 
…

How long did each job use the processor?
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Synchronous Task System Releases
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all tasks release their first job at a common time “zero.”
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Synchronous Task System Releases
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int wait_for_ts_release(void);

int release_ts(lt_t *delay);

➞ task sleeps until synchronous release

➞ trigger synchronous release in <delay> nanoseconds



MPI-SWS

Asynchronous Releases with Phase/Offset
LITMUSRT also supports non-zero phase/offset.
➡ release of first job occurs with some known offset after task system release.
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release of first job is staggered w.r.t. time “zero”
➔ can use schedulability tests for asynchronous periodic tasks
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Easier Starting Point for New Schedulers

struct sched_plugin { 
 […] 
 schedule_t   schedule; 
 finish_switch_t  finish_switch; 
 […] 
 admit_task_t  admit_task; 
 fork_task_t  fork_task; 

 task_new_t   task_new; 
 task_wake_up_t  task_wake_up; 
 task_block_t  task_block; 

 task_exit_t   task_exit; 
 task_cleanup_t  task_cleanup; 
 […] 
}

simplified scheduler plugin interface
simplified interface

+
richer task model 

+
plenty of working  
code to steal from
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LITMUSRT: Development Accelerator
Explicit support for sporadic task model
➡ The kernel knows WCETs, periods, deadlines, phases etc.

Support for true global scheduling
➡ supports proper pull-migrations
‣moving tasks among Linux’s per-processor runqueues 

➡ Linux’s SCHED_FIFO and SCHED_DEADLINE global scheduling 
“emulation” is not 100% correct (races possible)

Low-overhead non-preemptive sections
➡ Non-preemptive spin locks without system calls.

Wait-free preemption state tracking
➡ “Does this remote core need to be sent an IPI?”
➡ Simple API suppresses superfluous IPIs

Debug tracing with TRACE()
➡ Extensive support for “printf() debugging” ➞ dump from Qemu
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Many common tasks have already been taken care of.
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Getting Stated with

Key Concepts 
What you need to know to use LITMUSRT

— Part 3 —
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Scheduler Plugins

SCHED_LITMUS “class” invokes active plugin.
➡ LITMUSRT tasks have highest priority.
➡ SCHED_DEADLINE & SCHED_FIFO/RR:  
➔ best-effort from SCHED_LITMUS point of view
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SCHED_IDLE

SCHED_OTHER (CFS)

SCHED_FIFO/RR

SCHED_DEADLINE

SCHED_LITMUS

Linux scheduler classes:
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(
) active plugin Linux (dummy)

PSN-EDF

GSN-EDF

C-EDF

P-FP

P-RES

LITMUSRT plugins:
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Plugin Switch

Active plugin can be switched at runtime.
➡ But only if no real-time tasks are present.
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SCHED_IDLE

SCHED_OTHER (CFS)

SCHED_FIFO/RR

SCHED_DEADLINE

SCHED_LITMUS

Linux scheduler classes:
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(
) active plugin Linux (dummy)

PSN-EDF

GSN-EDF

C-EDF

P-FP

P-RES

LITMUSRT plugins:

$ setsched PSN-EDF
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Three Main Repositories
Linux kernel patch
➔ litmus-rt

+
user-space interface

➔ liblitmus

+
tracing infrastructure

➔ feather-trace-tools
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liblitmus: The User-Space Interface

C API (task model + system calls)

+
user-space tools

➔ setsched, showsched, release_ts, 
rt_launch, rtspin 
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/proc/litmus/* and /dev/litmus/*

/proc/litmus/*
➡ Used to export information about the plugins and existing 

real-time tasks.
➡ Read- and writable files.
➡ Typically managed by higher-level wrapper scripts.

/dev/litmus/*
➡ Special device files based on custom character device drivers.
➡ Primarily, export trace data (use only with ftcat):
‣ft_cpu_traceX — core-local overheads of CPU X
‣ft_msg_traceX — IPIs related to CPU X
‣sched_traceX — scheduling events on CPU X

➡ log — debug trace (use with regular cat)
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Control Page: /dev/litmus/ctrl
A (private) per-process page mapped by each real-time task
➡ Shared memory segment between kernel and task.
➡ Purpose: low-overhead communication channel
➡ interrupt count
➡ preemption-disabled and preemption-needed flags
➡ current deadline, etc.

Second purpose, as of 2016.1
➡ implements LITMUSRT “system calls” as ioctl() operations
➡ improves portability and reduces maintenance overhead

Transparent use
➡ liblitmus takes care of everything
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(Lack of ) Processor Affinities

Most LITMUSRT  plugins ignore affinity masks.
➡ In particular, all plugins in the mainline version do so.
‣Global is global; partitioned is partitioned…

Recent out-of-tree developments
➡ Support for hierarchical affinities [submitted to ECRTS’16]
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Xth bit set ➜ process may execute on core X

In Linux, each process has a processor affinity mask.
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Things That Are Not Supported

Architectures other than x86 and ARM
➡ Though not difficult to add support if someone cares…

Running on top of a hypervisor
➡ Though running on top of RT Xen seems to work now…
➡ You can use LITMUSRT as a real-time hypervisor by encapsulating kvm in a 

reservation. 

CPU Hotplug
➡ Not supported by existing plugins.

Processor Frequency Scaling
➡ Plugins “work,” but oblivious to speed changes.

Integration with PREEMPT_RT
➡ For historic reasons, the two patches are incompatible
➡ Rebasing on top of PREEMPT_RT has been on the wish list for some time…
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With limited resources, we cannot possibly support & test all Linux features.
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Enable practical multiprocessor real-time 
systems research under realistic conditions.

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Connect theory and practice. Don’t reinvent the wheel.

Use LITMUSRT as a baseline.
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What to expect in the hands-on session
Focus: using LITMUSRT as a development platform
➡ activating plugins
➡ running real-time tasks
➡ schedule tracing
➡ writing custom tasks
➡ (overhead tracing)

Out of scope: kernel hacking
➡ takes more than 90 minutes…
➡ Mastery of user-space is precursor to plugin development anyway.
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Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org/tutor16

➞ tutorial manual & slides available!

If you have questions later, stop by our friendly mailinglist!

http://www.litmus-rt.org/tutor16
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Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org/tutor16

➞ tutorial manual & slides available!

If you have questions later, stop by our friendly mailinglist!

See Manohar if you need to install our VM.

http://www.litmus-rt.org/tutor16

