Getting Started with

L ITMUsSR!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

presented at
TuToR 2016 @ CPSWeek 2016

Vienna, Austria, April 11, 2016

Max

Planck Bjorn B. Brandenburg
nstitute Manohar Vanga
o Mahircan Giil

Software Systems

Getting Stated with

LITMUSR!

Linux Testbed for Multipro or Scheduling in Real-Time Systems

Agenda

What? Why? How?
The first decade of LITMUSRT

2 Major Features
What sets LITMUSRT apart?

Key Concepts
3 What you need to know to use LITMUSRT

MPI-SWS

/] ';)/'lzf? » Getting Stated with
% Institute
y for L IT M I—' S

Software Systems _
Linux Testbed for Multipro or Scheduling in Real-Time Systems

What? Why? How?
The first decade of LITMUSRT

— Part 1 —

What is LITMUSRT?

A real-time extension of the Linux kernel.

MPI-SWS

What is LITMUSRT?

Linux kernel patch

+

user-space intertace

+

tracing infrastructure

MPI-SWS

What 1s LITMUSRT?

RT schedulers
RT synchronization
|cache & GPU]

Linux kernel patch

+
CAPI
user-space interface < device files
scripts & tools
+
overheads
tracing infrastructure { schedules
kernel debug log

MPI-SWS 6

Releases

What 1s LITMUSRT?

2007.1

2007.2

2007.3 RT schedulers
2008.1 . 1nux kernel patch RT synchronization
2008.2 [cache & GPU]
2008.3

2010.1 +

2010.2 | C API

2011.1 user-space interface < device files
2012.1 scripts & tools
2012.2 +

gggi . overheads
0141 tracing infrastructure { schedules

20149 kernel debug log
2015.1

2016.1

MPI-SWS 7

Mission

Enable practical multiprocessor real-time
systems research under realistic conditions.

MPI-SWS

Mission

Enable practical multiprocessor real-time
systems research under realistic conditions.

practical and realistic:

Efficiently... ...on real multicore hardware...

= enable apples-to-apples comparison = Realistic overheads on commodity
with existing systems (esp. Linux) platforms.

...support real applications... ...in a real OS.

= [/O, synchronization, legacy code = Realistic implementation

constraints and challenges.

MPI-SWS

Zch<d$, z)
| 1 I (dz',J',k =d, Y,z
\/
A 1 | N bbgy
- = > s
(d _ Y,z
A l | T e A bbi k) = b
= A g PRI =0bdt(g,y _
1 t T (2.7/9)>ga’1(,]y)) y,2) = 1
(dij' = ©
o Z.y,z2 \ bbst
R N Y O O Ao Uisk) = vay
0) 5 10 g (z]/g) =g /(J) ‘7"%2)\1
- Ty,z) N\ g
(d; . _ <z
T e A by (ijk) = b
/\Z<x) =~ bZt(Jz'y,z):O

“At any point in time, the
system schedules the m highest-
priority jobs, where a job’s
current priority is given by...”

Going from this...

group deadline

assumptions on the state of the current task since it may be called for a
number of reasons. The reasons include a scheduler tick() determined that it
was necessary, because sys_exit_np() was called, because some Linux
subsystem determined so, or even (in the worst case) because there is a bug
hidden somewhere. Thus, we must take extreme care to determine what the
current state 1is.

The CPU could currently be scheduling a task (or not), be linked (or not).
The following assertions for the scheduled task could hold:

- !is_running(scheduled) // the job blocks
- scheduled—>timeslice == // the job completed (forcefully)

- get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) >
- linked !'= scheduled // we need to reschedule (for any reason) tO t 1S
- 1is_np(scheduled) // rescheduling must be delayed, e o o ®

sys_exit_np must be requested

¥ H H H HK K K K F H H H H K K K K K K

Any of these can occur together.

static struct task structx (struct task struct * prev)
{

cpu_entry tx entry = & _get_cpu_var(gsnedf_cpu_entries);

int out_of _time, sleep, preempt, np, exists, blocks;

struct task structx next = -

CONFIG_RELEASE_MASTER [}::;;l il
Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
if (unlikely(gsnedf.release_master == entry->cpu)) { Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
sched_state_task_picked();
return -
}
raw_spin_lock(&gsnedf_lock); G-EDF: measured scheduling overhead for 3 tasks per processor (host=ludwig)
140000 min=0.79us max=314.60us avg=54.63us median=40.15us stdev=45.83us
sanity checking samples: total=560090
BUG_ON(entry—->scheduled && entry->scheduled != prev); [IQR filter not applied]

120000

BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && 'entry->scheduled); GlObal E F
100000

(@) Determine state
scheduler overhead

exists entry->scheduled != - 80000

blocks exists && !is_running(entry—>scheduled);
out_of_time = exists && budget_enforced(entry->scheduled)

60000

number of samples

&& budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled); 40000 f 72 t k 24
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; Or as On Cores
preempt = entry—->scheduled != entry—>linked; 20000

WANT _ALL_SCHED EVENTS 0
TRACE_TASK(prev, "invoked gsnedf_schedule.\n"); 4.00 3200 60.00 88.00 116.00 144.00 172.00 200.00 228.00 256.00

overhead in microseconds (bin size = 4.00us)

if (exists)
TRACE_TASK(prev,
'‘Dlocks'%d out o t1me:%d np:%ad s leep:%sd preempt :sd
'state:%a s1g:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev—>state, signal_pending(prev));
if (entry—>linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry—>linked->comm, entry—->linked->pid);

-11-:———F1 sched gsn edf.c 42% (419,0) Git-wip-job-counts (C/1 Abbrev)—4:43PM

Why You Should Be Using LITMUS*"

If you are doing kernel-level work anyway...

= Get a head-start — simplified kernel interfaces, debugging
infrastructure, user-space interface, tracing infrastructure

= As a baseline — compare with schedulers in LITMUSR!

If you are developing real-time applications...

= Get a predictable execution environment with “textbook
algorithms” matching the literature

= Understand kernel overheads with just a few commands!

If your primary focus is theory and analysis...
= To understand the impact of overheads.
= To demonstrate practicality of proposed approaches.

MPI-SWS 12

MPI-SWS

Theory vs. Practice

Why is implementing “textbook” schedulers difficult?

Besides the usual kernel fun:
restricted environment, special APIs, difficult to debug, ...

13

Scheduling in Theory

Scheduler: a function that, at each point
in time, maps elements from the set of
ready jobs onto a set of m processors.

Scheduling

7 Algorithm
Ready Queue >/

MPI-SWS

CPU 1

5

CPU 2

\-\CPUm

14

Scheduling in Theory

Scheduler: a function that, at each point
in time, maps elements from the set of
ready jobs onto a set of m processors.

/_, CPU A
d Scheduling ~
7 Algorithm E
Ready Queue — \
N CPU m

Global policies based on global state
=F.g., “At any point in time, the m highest-priority...”

Sequential policies, assuming total order of events.
=FE.g., “If a job arrives at time t...”

MPI-SWS 5

Scheduling in Theory

CPU1|CPU2| - CPUm\ - CPU 1
/ CPU 2
Scheduling /
Algorithm
Ready Queue \
NNCPU m

Practical scheduler: job assignment changes only in response to
well-defined scheduling events (or at well-known points in time).

MPI-SWS 16

Scheduling in Practice

CPU 1

MPI-SWS

CPU 1

CPU 2

CPU m

Scheduling in Practice

CPU1|~___
>

—> |CPU 1

W
Ready

\;;@ﬂ_@/

Each processor schedules only itself

= Multiprocessor schedulers are parallel algorithms.
= Concurrent, unpredictable scheduling events!

= New events occur while making decision!

= No globally consistent atomic snapshot for treel!

MPI-SWS 18

Original Purpose ot LITMUSR!

2
- 3 -

m

1 T L1
R o e
[a)] r] ~n
’ ’ ’ ‘4!-4

3t -]
N

]
2]
]

H = =

1

o |

i

S IR i s e M s

y T T T N I _ 1.

C——

|:| scheduled on proc
I:I scheduled on pr

T release

| deadline
Tcompl

pfair v
'_

group

tim- — .

MPI-SWS

|

I:lscheduled on processor 1
|:| scheduled on processor 2

l T release l deadline
| T completion
~ tme _
Gﬁ$k<q&yz) Aagiene U
v (dll’];/f = délf,yz .
w(J; . .
) (d z;J,/s) > bet(J$,y,z)) {tIe~break 1}
Lok = d
Z,y,2 /\ bbz't(JZ.jk) ~ b5 't(J
A RS O _
gdl(Jz',j’k) ~ gd/(] -Z,y,z) =1 {t.
V (4 2,y,2)) 1e-break 2}
4.5k = ¢
WJA“m¢m)\MﬂJ
Agdi(. . T e z, =
(Jigx) < va(s,,), ve) =1 {tie-brey
v (dz'jk\d Y,z /\Z<.’If) 3}
’ iz /\ bbig (Jz',j/s) = bbj;
Ni < .Z'), Zt(‘].z-,y,z) =0

{tie~break 4}

Develop efficient
implementations.

~deadune}

rav_spin_lock(&gsnedf_lock) ; P ra C t i C e

prev);

sanlty checkilng
BUG_ON(entry—>scheduled && entry—>scheduled !=
BUG_ON(entry—>scheduled && 'is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);

Determine state
entry->scheduled != ;
blocks exists && !is_running(entry—>scheduled);

(0)
ex1sts

Inform: what works well
and what doesn’t?

out_of_time = exists && budget_enforced(entry—>scheduled)
&& budget_exhausted(entry—>scheduled);
exists && is_np(entry->scheduled);
exists && get_rt_flags(entry—>scheduled) == RT_F_SLEEP;
entry->scheduled != entry->linked;

np
sleep
preempt

WANT_ALL_SCHED_EVENTS

TRACE_TASK(prev,);

(exists)
TRACE_TASK(prev,

blocks, out_of_time, np, sleep, preempt,
prev—>state, signal_pending(prev));
if (entry—>linked &S preempt)
TRACE_TASK(prev, -
entry—>1linked->comm, entry—->linked->pid);

-11-:———F1 sched asn edf.c 42% (419i0) Gitawig;]ob-counts (C/1 Abbrev)——4:43PM———-

19

History — The first Ten Years

Releases ,

[RTSS Q6] -+-evevevevvenene Calandrlpo et al. (2006)
2007 1. |not publicly released]
2007.2
2007.3
2008.1 ﬁ ;1} HEUNIVERSITY Project initiated by Jim Anderson (UNC);
2008.2 S AES | 4t CHAPEL HILL first prototype implemented by
2008.3 12006-2011] John Calandrino, Hennadiy Leontyeyv,
2010.1 Aaron Block, and Uma Devwi.
20102 -
2011.1 7 Graciously supported over the years by:
5015 1 NSE ARO, AFOSR, AFRL, and Intel, Sun,
50122 IBM, AT&T, and Northrop Grumman Corps.
2012.3 . Max Thanks!

2013.1 [P el
2014.1 \J for

Software Systems
2014.2 [2011-]
2015.1

20161 .

MPI-SWS 26

History — The first Ten Years

Releases |

[RTSS Q6] --vvvvereereereenes Calandrino et al. (2006)
20071 |not publicly released)
0072 Continuously maintained
58822 A THE UNIVERSITY = reimplemented for 2007.1
2008:2 I;I_;"_ JNORTH CAROLINA = 17 major releases spanning
2008.3 12006-2011] 40 major kernel versions
2010.1 - (Linux 2.6.20 — 4.1)
2010.2 -
2011.1 7
2012.1 . Impact
022 = used in about 50 papers,
2012.3 . and 7 PhD & 3 MSc theses
2013.1 LS = several hundred citations
égii; o s are systems = used in South & North
0151 2 America, Europe, and Asia
2016.1

MPI-SWS ° N

(Goals and Non-Goals

Goal: Make life easier for real-time systems researchers
= LITMUS®" always was, and remains, a research vehicle
= encourage systems research by making it more approachable

Goal: Be sufficiently feature complete & stable to be practical
= no point in evaluating systems that can’t run real workloads

Non-Goal: POSIX compliance
= We provide our own APIs — POSIX is old and cumbersome.

Non-Goal: API stability
= We rarely break interfaces, but do it without hesitation if needed.

Non-Goal: Upstream inclusion

= LITMUS"®! is neither intended nor suited to be merged into Linux.

MPI-SWS

22

(Q' :;):Eifﬁe Getting Stated with
-J LIT MU =1

Software Systems _
Linux Testbed for Multipro or Scheduling in Real-Time Systems

Major Features
What sets LITMUSKT apart?

— Part 2 —

Partitioned vs. Clustered vs. GGlobal

real-time multiprocessor scheduling approaches

partitioned scheduling clustered scheduling global scheduling

MPI-SWS

Predictable Real-Time Schedulers

Matching the literature!

Global EDF Pfair (PD?)

Clustered EDF
Partitioned EDF

Partitioned Fixed-Priority (FP)

Partitioned Reservation-Based
polling + table-driven

maintained in mainline LITMLISEL

MPI-SWS

25

Predictable Real-Time Schedulers

Matching the literature!

Global & Clustered Adaptive EDF

Global EDF Pfair (PD?) Global FIF%lobal EP
RUN MC2
Clustered EDF slot shifting QPS
. Global Message-Passing EDF &FP
Partitioned EDF - Strong Laminar APA FP
. EDF-HSB EDF-WM Nips.F
Partitioned Fixed-Priority (FP) EDF-frrﬁDF_ D
Partitioned Reservation-Based Sporadic Servers
polling + table-driven CBS
s CASH ,
- soft-polling slack sharing
maintained in mainline LITM LISRTé external branches & patches /

N paper-specific prototypes

26

Easily Compare Your Work

Bottom line:

= The scheduler that you need might already be available.

(Almost) never start from scratch:
= [f you need to implement a new scheduler, there likely
exists a good starting point (e.g., of similar structure).

Plenty of baselines:
= At the very least, LITMUSR" can provide you with
interesting baselines to compare against.

MPI-SWS

27

Predictable Locking Protocols

Matching the literature!

MC-IPC
SRP MPCP-VS MBWI
f Global OMLP
FMLP+ ;
DPCP ovp NP
PCP DFLP
MPCE Clustered OMLP

non-preemptive spin locks k-exclusion locks

maintained in mainline LITMLISRT external branches & patches |
. paper-specific prototypes

MPI-SWS 28

Lightweight Overhead Tracing

feather
race

minimal static trace points

+

binary rewriting (jmp <= nop)

+

per-processor, wait-free butfers

MPI-SWS

P-EDF: measured context-switch overhead for 3 tasks per processor (host=ludwig)
min=0.63us max=44.59us avg=5.70us median=5.39us stdev=2.39us

70000 I
50000 Partitioned EDF
, 50000 context-switch overhead
Qo
£ 40000 k 4 .
: |72 tasks, 24 cores]
g 30000 .
£
-}
< 20000 -
10000 -
0
0.25 1.75 3.25 4.75 6.25 7.75 9.25 10.75 12.25 13.75
overhead in microseconds (bin size = 0.25us)
P-EDF: measured job release overhead for 3 tasks per processor (host=ludwig)
min=0.27us max=23.54us avg=5.48us median=4.93us stdev=2.72us
45000 I T T
40000 -
35000 :
n [] [
g oo Partitioned EDF
s 25000 . -
- job release overhead
o)
£
> 15000 -
= |72 tasks, 24 cores]
10000 -
5000 .
1.00 7.00 13.00 19.00 25.00 31.00 37.00 43.00 49.00 55.00
overhead in microseconds (bin size = 1.00us)
MPI-SWS

number of samples

number of samples

70000

60000

50000

40000

30000

20000

10000

25000

20000

15000

10000

5000

Evaluate Your Workload wzth Realistic Overbeads

G-EDF: measured context-switch overhead for 3 tasks per processor (host=ludwig)
min=0.62us max=37.74us avg=5.52us median=5.31us stdev=2.10us

f Global EDF
| context-switch overhead
| |72 tasks, 24 cores]
0.25 1.75 3.25 4.75 6.25 7.75 9.25 10.75 12.25 13.75
overhead in microseconds (bin size = 0.25us)
G-EDF: measured job release overhead for 3 tasks per processor (host=ludwig)
SRS AR R e U LSRR e B
f Global EDF
job release overhead
|72 tasks, 24 cores]
4.00 32.00 60.00 88.00 116.00 144.00 172.00 200.00 228.00 256.00
overhead in microseconds (bin size = 4.00us) A

Note the scale!

30

Overhead tracing, ideally:

Automatic Interrupt Filtering

start ti

measured activity -stamp

With outliers:

start ti

MPI-SWS

noise due to untimely interrupt

31

Automatic Interrupt Filtering

Overhead tracing, ideally:

start tim- measured activity -estamp

. noise due to untimely interrupt

With outliers:
How to cope? Since LITMUS®! 2012.2:
= can’t just turn off interrupts = [SRs increment counter
= Used statistical filters... = timestamps include
» ...but which filter? counter snapshots & flag
» ... what if there are true = interrupted samples
outliers? discarded automatically

MPI-SWS 32

Cycle Counter Skew Compensation

Tracing inter-processor interrupts (IPI):

Core 1 start ti

IPI

C

Core 27

MPI-SWS

Cycle Counter Skew Compensation

Tracing inter-processor interrupts (IPI), with non-aligned clock sources:

Core 1 start ti

IPI

Core 27

IPI received before it was sent!?
|— overflows to extremely large outliers)

MPI-SWS 34

Cycle Counter Skew Compensation

Tracing inter-processor interrupts (IPI), with non-aligned clock sources:

Core 1 start tim

IPI

Core 27/

IPI received before it was sent!?
|— overflows to extremely large outliers)

In LITMUS®!, simply run £tecat -c to measure and automatically
compensate tor unaligned clock sources.

MPI-SWS 35

MPI-SWS

Lightweight Schedule Tracing

task parameters

+

context switches & blocking

+

job releases & deadlines & completions

Built on top of:

feather
race

Schedule Visualization: st-draw

Ever wondered what a Pfair schedule looks like in reality?

MPI-SWS

37

Schedule Visualization: st-draw

Ever wondered what a Pfair schedule looks like in reality?

Easy! Just record the schedule with sched_trace and run st-draw!

rtspin/30084

(17.00ms, 30.00ms T- 3 B B B =B i

rtspin/30085

(17.00ms, 30.00ms T- I B B N . i

rtspin/30086

rtspin/30087
sr00meso0ome [l O DO BN e w1

rtspin/30088 41
o BN e EE v Bm e =

(17.00ms, 30.00ms)

> €

rtspin/30089 1
(17.00ms, 30.00ms)

<

Note: this is real execution data from a 4-core machine,

not a simulation! [Color indicates CPU identity).
MPI-SWS 38

Easy Access to Workload Statistics

“We traced the resulting schedules using LITMUSR!"s
sched_trace facility and recorded the response times of more
than 45,000,000 ndividual jobs.”

[—, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, ECRTS’13]

iE.08 iotocks NICCE owe

1E+07
1E+06

1E+05
1E+04
1E+03
1E+02
1E+01 I I I I_

Qp Qf) o) (ga\ bp\ P?o\ A o 60\ 6@\ /\0\ 19) %0\ %6\ go\ gﬁ\
QETERTET T PPN @ @ @ IO O T @

response time (bin size = 5ms)

number of jobs

(b) Response times of regular tasks with period p; = 100ms.

MPI-SWS

Easy Access to Workload Statistics

“We traced the resulting schedules using LITMUSR!

sched_trace facility and recorded the response times of more

than 45,000,000 ndividual jobs.”

[—, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, ECRTS’13]

(1) st-trace-schedule my-ecrtsl3-experiments-OMIP

[..run workload..]

(2) st-job-stats *my-ecrtsl3-experiments-OMIP*.bin

Task, Job, Period, Response, DL Miss?, Lateness, Tardiness,

task NAME=rtspin PID=29587 COST=1000000 PERIOD=10000000 CPU=0
29587, 2, 10000000, 1884, o, -—9998116, o,
29587, 3, 10000000, 1019692, 0, -8980308, 0,
29587, 4, 10000000, 1089789, O, -8910211, o,
29587, 5, 10000000, 1034513, o, -8965487, o,
29587, 6, 10000000, 1032825, 0, -8967175, 0,
29587, 7, 10000000, 1037301, O, -8962699, o,
29587, 8, 10000000, 1033699, o, -8966301, o,
29587, 9, 10000000, 1037287, 0, -8962713, 0,

MPI-SWS

Forced?,

O O O O O O O O

- - - - - - - -

ACET

1191
1017922
1030550
1016656
1016096
1016078
1016535
1015794

Easy Access to Workload Statistics

“We traced the resulting schedules using LITMUSR!
sched_trace facility and recorded the response times of more
than 45,000,000 ndividual jobs.”

[—, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, ECRTS’13]

(1) st-trace-schedule my-ecrtsl3-experiments-OMIP
[..run workload..]

(2) st-job-stats *my-ecrtsl3-experiments-OMIP*.bin

Task, Job, Period, Response, DL Miss?,
task NAME=rtspin PID=29587 COST=1000000 PERIOD=10000000 CPU=0
29587, 2, 10000000, 1884, o,
29587, 3, 10000000, 1019692, 0,
29587, 4, 10000000, 1089789, O,
29587, 5, 10000000, 1034513, o,
29587, 6, 10000000, 1032825, 0,
29587, 7, 10000000, 1037301, O,
29587, 8, 10000000, 1033699, o,
29587, 9, 10000000, 1037287, 0,

MPI-SWS

How long did each job use the processor:

Lateness, Tardiness, Forced?,
-9998116,
-8980308,
-8910211,
-8965487,
-8967175,
-8962699,
-8966301,

-8962713,

O O O O O O O O
O O O O O O O O

- - - - - - - -

ACET

1191
1017922
1030550
1016656
1016096
1016078
1016535
1015794

Synchronous Task System Releases

rtspin/29059
rtspin/29060

(1.00ms, 10.00ms) Ti H “
rtspin/29061

(2.00ms, 20.00ms)]\i H
rtspin/29062

(3.00ms, 30.00ms) T

rtspin/29063
(4.00ms, 40.00ms)

rtspin/29064
(5.00ms, 50.00ms)

Ii
—

| I*

rtspin/29065 1t
(6.00ms, 60.00ms)

rtspin/29066 1t
(7.00ms, 70.00ms)

- all tasks release their first job at a common time “zero.”

MPI-SWS

Synchronous Task System Releases

rtspin/29059

(10.00ms, 100.00ms) T d
tspin/29060

(1.00ms, 10.00ms) Ti H

tspin/29061

]i
—

rtspin/29062
(3.00ms, 30.00ms)

tspin/29063

| I*

(4.00ms, 40.00ms) Ti
tspin/29064 1

5.00ms, 50.00m9) d
rtspin/29065 1 ‘

(6.00ms, 60.00ms)
tspin/29066 1

(7.00ms, 70.00ms)

int wait for ts release(void);
— task sleeps until synchronous release

int release_ts(lt_t xdelay);
— trigger synchronous release in <delay> nanoseconds

MPI-SWS 43

Asynchronous Releases with Phase/Oftset

LITMUS"" also supports non-zero phase/offset.
= release of first job occurs with some known offset after task system release.

rtspin/29587

(1.00ms, 10.00ms) H i i i
rtspin/29588

(2.00ms, 20.00ms) H i
rtspin/29589

(3.00ms, 30.00ms) H
rtspin/29590

rtspin/29591
(5.00ms, 50.00ms)
rtspin/29592
(6.00ms, 60.00ms)
rtspin/29593

(7.00ms, 70.00ms)
rtspin/29595

" release of first job is staggered w.r.t. time “zero”
=> can use schedulability tests for asynchronous periodic tasks

MPI-SWS 44

Easier Starting Point for New Schedulers

simplified scheduler plugin interface

struct sched plugin {
[...]
schedule t
finish switch t
[...]
admit task t
fork task t

task new t
task wake up t
task block t

task exit t
task cleanup t

[-..]

schedule;

finish switch;

admit task;
fork task;

task new;
task wake up;
task block;

task exit;
task cleanup;

MPI-SWS

simplified intertace

+

richer task model

+

plenty of working
code to steal from

45

LITMUS*!: Development Accelerator

Many common tasks have already been taken care of.

Explicit support for sporadic task model
= The kernel knows WCETs, periods, deadlines, phases etc.

Support for true global scheduling
= supports proper pull-migrations
» moving tasks among Linux’s per-processor runqueues
= Linux’s SCHED_FIFO and SCHED_DEADLINE global scheduling

“emulation” is not 100% correct (races possible)

Low-overhead non-preemptive sections
= Non-preemptive spin locks without system calls.

Wait-free preemption state tracking
= “Does this remote core need to be sent an IPI?”
= Simple API suppresses superfluous IPIs

Debug tracing with TRACE()

= Extensive support for “printf () debugging” — dump from Qemu
MPI-SWS

(% :;):EEtCuﬁe Gettmg Stated with
'J LITMU =1

Software Systems _
Linux Testbed for Multipro or Scheduling in Real-Time Systems

Key Concepts
What you need to know to use LI'TMUSKT

— Part 3 —

Scheduler Plugins

LITMUSR! plugins:

[Linux scheduler classes:

= : : » Linux (dummy)
q oo s |
Bl SCHED_DEADLINE PSN-EDF
N \
§ SCHED_FIFO/RR GSN-EDF
BN SCHED_OTHER (CFS) .
- C-EDF
0, SCHED IDLE .

P-FP

SCHED_LITMUS “class” invokes active plugin.

= LITMUSR! tasks have highest priority. P-RES

= SCHED_DEADLINE & SCHED_FIFO/RR: .
-> best-effort from SCHED_LITMUS point of view

MPI-SWS

Plugin Switch

LITMUSR! plugins:

[Linux scheduler classes:

= : .] Linux (dummy)
= SCHED_LITMUS 8
Bl SCHED_DEADLINE s PSN-EDF
N \
P
; SCHED_FIFO/RR GSN-EDE
BN SCHED_OTHER (CFS) .
- C-EDF
0, SCHED IDLE .

P-FP

$ setsched PSN-EDF \
P-RES

Active plugin can be switched at runtime.
= But only if no real-time tasks are present.

MPI-SWS

49

Three Main Repositories

Linux kernel patch
- litmus-rt

+

user-space interface
—> liblitmus

+

tracing infrastructure
> feather-trace-tools

MPI-SWS

liblitmus: The User-Space Interface

C API (task model + system calls)

+
user-space tools

->» setsched, showsched, release ts,
rt launch, rtspin

MPI-SWS

/proc/litmus/* and /dev/litmus/*

[proc/litmus/*

= Used to export information about the plugins and existing
real-time tasks.

= Read- and writable files.

= Typically managed by higher-level wrapper scripts.

[dev/litmus/*
= Special device files based on custom character device drivers.
= Primarily, export trace data (use only with ftcat):
» ft cpu traceX — core-local overheads of CPU X
» £t msg traceX — IPIs related to CPU X
» sched_traceX — scheduling events on CPU X
= 1og — debug trace (use with regular cat)

MPI-SWS

52

Control Page: /dev/1litmus/ctrl

A (private) per-process page mapped by each real-time task
= Shared memory segment between kernel and task.

= Purpose: low-overhead communication channel

= Iinterrupt count

= preemption-disabled and preemption-needed tlags

= current deadline, etc.

Second purpose, as of 2016.1
= implements LITMUS®! “system calls” as ioct1 () operations

= improves portability and reduces maintenance overhead

Transparent use
= 1iblitmus takes care of everything

MPI-SWS

53

MPI-SWS

(LLack of) Processor Affinities

In Linux, each process has a processor affinity mask.

Xth bit set =» process may execute on core X

Most LITMUS®! plugins ignore affinity masks.
= In particular, all plugins in the mainline version do so.
» Global 1s global; partitioned 1s partitioned. ..

Recent out-of-tree developments
= Support for hierarchical affinities [submitted to ECRTS 16}

54

Things That Are Not Supported

With limited resources, we cannot possibly support & test all Linux features.

Architectures other than x86 and ARM
= Though not difficult to add support if someone cares...

Running on top of a hypervisor

= Though running on top of RT Xen seems to work now...

= You can use LITMUS"' as a real-time hypervisor by encapsulating kvm in a
reservation.

CPU Hotplug
= Not supported by existing plugins.

Processor Frequency Scaling
= Plugins “work,” but oblivious to speed changes.

Integration with PREEMPT_RT

= For historic reasons, the two patches are incompatible
= Rebasing on top of PREEMPT_RT has been on the wish list for some time...

MPI-SWS 55

L ITMUsR!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Enable practical multiprocessor real-time
systems research under realistic conditions.

Connect theory and practice. Don’t reinvent the wheel.

Use LITMUSR! as a baseline.

MPI-SWS

What to expect in the hands-on session

Focus: using LITMUS"! as a development platform
= activating plugins
= running real-time tasks

= schedule tracing

= writing custom tasks L IT w u S RT

) (Overhead traClng) Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org / tutorl6

— tutorial manual & slides available!
Out of scope: kernel hacking

= takes more than 90 minutes...
= Mastery of user-space is precursor to plugin development anyway.

If you have questions later, stop by our friendly mailinglist!

MPI-SWS

57

http://www.litmus-rt.org/tutor16

See Manohar if you need to install our VM.

Focus: using LITMUS"! as a development platform
= activating plugins

= running real-time tasks
= schedule tracing

= writing custom tasks L IT M I—' S RT

) (OVQI‘head traClng) Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org / tutorl6

— tutorial manual & slides available!
Out of scope: kernel hacking

= takes more than 90 minutes...
= Mastery of user-space is precursor to plugin development anyway.

If you have questions later, stop by our friendly mailinglist!

MPI-SWS 58

http://www.litmus-rt.org/tutor16

