
A Tour of LITMUS
Björn B. Brandenburg, Mahircan Gül, and Manohar Vanga

LITMUS is the Linux Testbed for Multiprocessor Scheduling in Real-Time Systems. Its purpose is to provide a
foundation for applied real-time systems research. To this end, LITMUS

1. adds predictable scheduling and synchronization policies to the Linux kernel,
2. reduces the effort involved in prototyping new scheduling and synchronization polices in the kernel by

offering a simplified scheduling policy plugin interface,
3. provides liblitmus a userspace library to expose the added kernel functionality to applications, and
4. comes with Feather-Trace, a low-overhead tracing framework.

This guide provides an introduction to the user-facing parts of LITMUS , namely (3) and (4), and assumes that the
kernel (with the LITMUS modifications in place) has already been compiled and is working. How to modify the
kernel itself or how to develop new policy plugins is beyond the scope of this guide.

This guide describes LITMUS as of version 2016.1 (released in April 2016).

Booting

LITMUS boots just like any other Linux system. In most cases, no modifications need to be made to the Linux
distribution’s init system.

Linux supports a large number of boot parameters that can be passed to the kernel as a kernel command line argument.
Most of these parameters are irrelevant to LITMUS ; however, one of them, the maxcpus parameter, is particularly
useful and worth highlighting.

The maxcpus parameter allows limiting the number of processors used by the kernel. This can be used to instruct the
kernel to leave some of the available processor cores unused. For instance, this is especially useful when conducting
scalability experiments where the overhead of a scheduler (or some other component) needs to be obtained for a range
of core counts.

(Note: there also exists a static maximum supported processor count called NR_CPUS that is set as part of the kernel
configuration at compile time. The maxcpus parameter cannot exceed NR_CPUS.)

Schedulers

As already mentioned, LITMUS augments the Linux kernel with a number of predictable scheduling policies, which
are realized as scheduler plugins.

At all times, the active plugin determines the current scheduling policy in a LITMUS kernel. When the system
boots up, it initially uses the dummy Linux plugin, which simply disables all LITMUS functionality (which is not
needed during bootup). Hence, before using any LITMUS features, one of the available policy plugins must be
activated with a plugin switch (as discussed in more detail below).

RT

RT

RT

RT

RT

RT

RT

RT

RT

RT

RT

RT

http://www.litmus-rt.org/

A Tour of LITMUS RT TuToR 2016

MPI-SWS 2/24

As of version 2016.1, the following real-time scheduling policies are built into the LITMUS kernel:

Linux : A dummy scheduling policy for disabling real-time functionality
P-FP : Partitioned, fixed-priority scheduling
PSN-EDF : Partitioned, dynamic-priority earliest-deadline first (EDF) scheduling
GSN-EDF : Global EDF scheduling
C-EDF : Clustered EDF scheduling, a hybrid of partitioned and global EDF scheduling
PFAIR : Proportionate fair (Pfair) scheduling, based on the PD algorithm
P-RES : Reservation-based scheduling plugin, which supports a set of partitioned uniprocessor reservations:

periodic polling server
sporadic polling server
table-driven reservations

These policy plugins form two groups: whereas the classic plugins — P-FP, PSN-EDF, GSN-EDF, C-EDF, and PFAIR
— are process-based (i.e., one real-time “task” = one single-threaded Linux process), the much more recent
reservation-based plugin P-RES implements first-class reservations (i.e., one real-time “task” = any number of
threads/processes).

The classic plugins have been a part of LITMUS since the first version from 2006/2007 and have been used in
virtually all prior studies based on LITMUS . However, they impose certain limitations that may render them
unsuitable for certain workloads (e.g., when a real-time process forks, the child process is not a real-time process to
avoid overload). We expect future developments to focus increasingly on reservation-based plugins.

While P-FP, PSN-EDF, P-RES, and GSN-EDF are built into the kernel by default, C-EDF and PFAIR are optional and
can be de-selected during kernel configuration. During boot-up, built-in policies are loaded by the kernel and can then
be later activated (one at a time) by the root user.

At runtime, scheduler plugins are managed via a simple /proc interface that is exposed under /proc/litmus. All
files under under /proc/litmus can be manually read or written for management purposes; however it is often
easier and more convenient to use higher-level tools offered by liblitmus. In the following, we discuss a list of
basic user-space commands related to plugin management, followed by an example.

All the commands mentioned in the following must be executed as root.

Listing All Available Schedulers

All loaded schedulers can be listed by running cat /proc/litmus/plugins/loaded.

For example:

root@litmus:~ cat /proc/litmus/plugins/loaded
PFAIR
P-FP
P-RES
PSN-EDF
GSN-EDF
Linux

RT

2

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 3/24

Displaying the Active Scheduler Plugin

The currently active scheduler is reported by the showsched tool. Alternatively, it can be printed with cat
/proc/litmus/active_plugin.

Example:

root@litmus:~ showsched
Linux
root@litmus:~ cat /proc/litmus/active_plugin
Linux

After boot-up, the active scheduler is set to Linux by default.

Changing the Active Scheduler Plugin

The active scheduler plugin can be selected with the setsched tool. Switching scheduling policies is permitted only
when there are no active real-time tasks in the system.

To activate a specific policy, invoke setsched with the policy name as the first argument. For example, to activate
the GSN-EDF plugin, run setsched GSN-EDF.

If setsched succeeds, then there is no output, as is typical for UNIX tools.

Example:

root@litmus:~ setsched GSN-EDF
root@litmus:~ showsched
GSN-EDF
root@litmus:~

To be presented with a text-based interface for selecting the active scheduler from the list of available plugins, run
setsched without an argument.

There can be only one active policy at any time.

Selecting the C-EDF and PFAIR Cluster Sizes

Under clustered scheduling, non-overlapping sets of processors are scheduled independently with a “global” policy. In
LITMUS , clusters are created based on cache topology.

The C-EDF scheduler builds clusters of processors at activation time based on the current value of the cluster file
/proc/litmus/plugins/C-EDF/cluster. Valid values are “L1”, “L2”, “L3”, or “ALL”, where “ALL”
indicates global scheduling (i.e., with “ALL” a single cluster containing all processor cores is built). On processors
with private L1 caches, “L1” corresponds to partitioned scheduling (i.e., in this case, C-EDF builds one cluster for
each processor).

The PFAIR plugin also supports clustered scheduling based on the corresponding cluster file
/proc/litmus/plugins/PFAIR/cluster.

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 4/24

Note that clusters are configured when a plugin is activated, i.e, the cluster size cannot be changed while a plugin is
active. To be effective, the desired cluster size has to be written to the cluster file before the scheduler switch.

If a change in cluster size is desired, first switch to the Linux plugin, update the cluster file, and then switch back to the
clustered plugin. For example:

switch to Linux plugin
setsched Linux
configure L2-based clusters
echo L2 > /proc/litmus/plugins/C-EDF/cluster
switch back to C-EDF
setsched C-EDF

Working with Reservations in P-RES

In contrast to other LITMUS plugins, reservations are first-class entities in P-RES that exist independently of tasks.
In particular, they must be created before any task can be launched, and they continue to exist even after all tasks have
terminated. Multiple tasks or threads can be assigned to the same reservation. If a task forks, both the parent and the
child remain in the same reservation.

Partitioned Reservations

To create new reservations, use the tool resctl. The tool has an online help message that can be triggered with
resctl -h, which explains all options. In the following, we explain how to create partitioned, per-processor
reservations.

Reservation Types

The current version of the P-RES plugin supports three reservation types:

polling-periodic (PP)
polling-sporadic (PS)
table-driven (TD)

Additional common reservations types (e.g., CBS, sporadic servers, etc.) have been developed in a separate branch and
are expected to be released in a future version of LITMUS .

The most simple reservation type is the polling reservation, which comes in two flavors: classic periodic polling
reservations (PP), and more flexible sporadic polling reservations (SP). The latter is ideally suited for encapsulating
sporadic and periodic real-time tasks, whereas the former is useful primarily if there is a need for fixed, known
replenishment times.

In the following examples, we use sporadic polling reservations.

Creating a Reservation

Each reservation is identified by a reservation ID (RID), which is simply a non-negative number (like a PID).
However, there are two important differences between PIDs and RIDs:

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 5/24

1. In contrast to PIDs, RIDs are not automatically assigned. Rather, the desired RID must be specified when the
reservation is created.

2. The same RID may be used on multiple processors (i.e., RIDs are not unique systemwide). Hence it is
important to specify the processor both when creating reservations and when attaching processes to
reservations.

Use the following invocation to create a new sporadic polling reservation with RID 123 on core 0:

resctl -n 123 -t polling-sporadic -c 0

Unless there is an error, no output is generated.

The above command created a polling reservation with a default budget of 10ms and a replenishment period of 100ms.

To specify other periods and/or budgets, use the -p and -b options, respectively.

For instance, use the following invocation to create a sporadic polling reservation with RID 1000 on core 1 with a
budget of 25ms and a replenishment period of 50ms:

resctl -n 1000 -t polling-sporadic -c 1 -b 25 -p 50

By default, resctl creates EDF-scheduled polling reservations. To create fixed-priority reservations, simply set a
numeric priority explicitly with the -q option. In LITMUS , a lower numeric priority value corresponds to a higher
priority, i.e., 1 is the highest priority in LITMUS and 511 is (currently) the lowest possible priority. (The number of
distinct priority levels available can be easily changed by recompiling the kernel.)

Deleting a Reservation

There is currently no mechanism to delete individual reservations. Once created, a reservation persists until the
scheduler plugin is switched.

To delete all reservations, simply switch the active scheduler plugin to Linux and back again.

setsched Linux
setsched P-RES

Real-time Tasks

There are two ways of running real-time tasks in LITMUS . The first is to use the liblitmus API to program a
custom real-time application, and the second is to use the rt_launch tool for executing arbitrary Linux binaries as
LITMUS real-time tasks.

Common to both cases, there are a couple of parameters that should be set before starting a real-time task:

Worst-case execution time (WCET) : The maximum execution time of any job of the task. In LITMUS ,
scheduler plugins typically interpret this value as a budget (and not as a statement about the true maximum).
Period : The minimum activation interval of the task. Scheduler plugins (typically) enforce this parameter.
Deadline : The relative deadline of the task. If not specified, the period is used as the implicit deadline.
Offset : The delay between a task system release (see the discussion of release_ts below) and the release

RT

RT

RT

RT

RT

http://www.litmus-rt.org/

A Tour of LITMUS RT TuToR 2016

MPI-SWS 6/24

of the task’s first job. This parameter defaults to zero and is rarely set.
Partition : The partition (or cluster in the case of C-EDF or PFAIR) to which a task belongs. Unnecessary for
global schedulers.

It is further possible to specify a task’s “hardness” as its class; however, this parameter is ignored by all currently
included schedulers and has no effect.

Class : Tasks are classified into hard real-time (HRT), soft real-time (SRT) and best-effort (BE) in LITMUS .
If not specified otherwise, tasks default to being HRT tasks.

In the following, we provide a brief description of the tools in liblitmus related to running real-time tasks. For
detailed usage information, run the mentioned commands without any parameters.

Simulating CPU-bound workloads with rtspin

The tool rtspin is a simple test task distributed with liblitmus that follows the first approach, i.e., it uses the
API to programmatically “become” a real-time task when launched. The tool executes a simple, configurable spin loop
that is useful for simulating CPU-bound workloads. It can be used for test and debugging purposes.

Usage:
 (1) rtspin [COMMON-OPTS] WCET PERIOD DURATION
 (2) rtspin [COMMON-OPTS] -f FILE [-o COLUMN] WCET PERIOD
 (3) rtspin -l
 (4) rtspin -B

Modes:
 (1) run as periodic task with given WCET and PERIOD
 (2) as (1), but load per-job execution times from CSV file
 (3) Run calibration loop (how accurately are target runtimes met?)
 (4) Run background, non-real-time cache-thrashing loop (w/ -m).

 -w wait for synchronous release
 -v verbose (prints PID)
 -p CPU physical partition or cluster to assign to
 -r VCPU reservation to attach to
 -d DEADLINE relative deadline, implicit by default (in ms)
 -q PRIORITY priority to use (ignored by EDF plugins, highest=1,
lowest=511)
 -c be|srt|hrt task class (best-effort, soft real-time, hard real-time)
 -l run calibration loop
 -m RSS set working set size (memory accessd by job)
 -e turn on budget enforcement,disabled by default
 wcet, period reservation parameters (in ms)

 WCET and PERIOD are milliseconds, DURATION is seconds.
 CRITICAL SECTION LENGTH is in milliseconds.
 RESIDENT SET SIZE (RSS) is in number of pages

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 7/24

For example, the following command executes the task for 5 seconds on core 2 with a period of 10 ms and a WCET of
1.5 ms.

rtspin -p 2 1.5 10 5

For partitioned plugins (i.e., P-FP, PSN-EDF, P-RES), the partition number ranges from 0 to m - 1, where m is the
number of CPUs.

For global schedulers (i.e., GSN-EDF, and PFAIR and C-EDF with the default cluster size “ALL”), the partition option
(-p) is irrelevant and should be omitted.

Note that priority assignment is not carried out automatically under fixed-priority schedulers. To specify a task’s
priority, use the -q option, which accepts priorities in the range 1–511, where 1 is the highest-possible priority. If the -
q option is omitted, rtspin defaults to the lowest-possible priority (511 in the current LITMUS version).

When testing schedulers or learning to use LITMUS , we recommend to run rtspin with the -v option, which
provides some useful feedback on the execution of each job, including the task’s PID and each job’s absolute deadline.

Launching rtspin in a Reservation

The rtspin test application can be assigned to a pre-existing reservation with the -r option.

For example, to assign an rtspin process that runs for three seconds with period 100 and execution time 10 to
reservation 1000 on core 1, launch rtspin like this:

 rtspin -p 1 -r 1000 10 100 3

Under reservation-based schedulers, task priorities are irrelevant (i.e., ignored). Instead, priorities need to be assigned
to reservations, as mentioned in the section titled Creating a reservation.

Launching Arbitrary Binaries with rt_launch

Sometimes it is useful to run arbitrary tasks in LITMUS real-time mode, either to run “legacy” code or for testing
purposes. For this purpose, liblitmus provides a tool called rt_launch that allows executing arbitrary binaries
as real-time tasks with arbitrary parameters. (In some sense, rt_launch can be thought of as the opposite of nice.)

The tool accepts mostly the same parameters as rtspin, but instead of a test duration, simply specify a binary that is
to be executed. Any parameters not consumed by rt_launch will be passed as arguments to the to-be-launched
binary.

Usage: rt_launch OPTIONS wcet period program [arg1 arg2 ...]
 -w wait for synchronous release
 -v verbose (prints PID)
 -p CPU physical partition or cluster to assign to
 -r VCPU virtual CPU or reservation to attach to (irrelevant to
most plugins)
 -R create sporadic reservation for task (with VCPU=PID)
 -d DEADLINE relative deadline, implicit by default (in ms)
 -o OFFSET offset (also known as phase), zero by default (in ms)
 -q PRIORITY priority to use (ignored by EDF plugins, highest=1,

RT

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 8/24

lowest=511)
 -c be|srt|hrt task class (best-effort, soft real-time, hard real-time)
 -e turn off budget enforcement (DANGEROUS: can result in
lockup)
 wcet, period reservation parameters (in ms)
 program path to the binary to be launched

For example, the below command launches the find utility on processor 1 as a “real-time task” with a period of
100ms and a budget of 10ms.

rt_launch -p 1 10 100 find /

By default, the launched binary will be subject to budget enforcement to prevent runaway processes from taking over
the processor. For example, by launching find with a large period (say, 5 seconds), the effects of budget enforcement
become easy to notice.

rt_launch -p 1 10 5000 find /

Note that it may be required to pass -- (two dashes) after the last argument intended for rt_launch to stop it from
processing options intended for the to-be-launched program. For example, suppose the goal is to print only files ending
in .c. The following invocation will result in an error because rt_launch will try to interpret the option -iname
and fail.

Will fail; rt_launch does not understand -iname.
rt_launch -p 1 10 100 find / -iname '*.c'

Instead, use the following invocation to clearly separate options for rt_launch from those for find.

Works as expected; rt_launch stops option processing at '--'.
rt_launch -p 1 10 100 -- find / -iname '*.c'

Budget enforcement can be turned off with the -e option, but this is dangerous: under a classic plugin, a CPU-bound
task will monopolize the CPU and likely lock up the system. Under the newer reservation-based schedulers, the budget
enforcement is provided by the reservations (and not on a per-task basis) and cannot be turned off.

Under fixed-priority scheduling, don’t forget to set a priority with the -q option.

Launching Arbitrary Binaries in a Reservation

The rtspin options related to reservations (-p and -r) are also understood by the rt_launch utility. Similar to
the prior reservation example, the following command executes find in reservation 1000 on core 1:

rt_launch -p 1 -r 1000 10 100 find /

Attaching an Already Running Task to a Reservation

It is also possible to assign an already running, non-real-time process or thread to a reservation. This can be
accomplished with the -a (attach) option of resctl.

For example, to move the current shell into reservation 1000 on core 1, execute the following command:

A Tour of LITMUS RT TuToR 2016

MPI-SWS 9/24

resctl -a $$ -r 1000 -c 1

As a result, the shell will now be running as a real-time task, subject to the priority and budget replenishment of the
given reservation.

Setting Up a (Synchronous) Task System Release with release_ts

In many cases, tasks should not commence running before all tasks have finished initialization. Furthermore, it can
simplify a system’s design and analysis if tasks are known to share a common “time zero”.

This is especially true for periodic tasks—typical schedulability analysis for periodic tasks assumes either synchronous
task systems, where all tasks release their first job at a common time zero, or asynchronous task systems, where each
task releases its first job at a known offset (or phase) relative to a shared time zero.

For these reasons, LITMUS has explicit support for setting up and triggering synchronous task system releases
(which are basically a form of barrier synchronization).

The tools rtspin and rt_launch support this feature with the -w option, which means wait for a (synchronous)
task system release. When set, tasks do not start executing immediately, but wait for a synchronous release point.

The synchronous task release can be triggered by running release_ts. The number of tasks waiting for release,
along with the total number of active real-time tasks, can be listed with cat /proc/litmus/stats.

Example:

$ setsched GSN-EDF
launch four tasks waiting for release
$ rtspin -w 10 100 4 &
$ rtspin -w 10 100 4 &
$ rtspin -w 10 100 4 &
$ rtspin -w 10 100 4 &
$ cat /proc/litmus/stats
real-time tasks = 4
ready for release = 4
$ release_ts
Released 4 real-time tasks.

Note that it is possible to specify a number of tasks to wait for before triggering the synchronous release with the -f
option of release_ts.

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 10/24

Overhead Tracing
We next discuss how to trace and process system overheads (such as context switch costs, scheduling costs, task wake-
up latencies, etc.).

Recording Overheads with Feather-Trace

To record overheads, use the high-level wrapper script ft-trace-overheads in a system running a LITMUS
kernel that has been compiled with overhead tracing enabled in the kernel configuration (i.e.,
CONFIG_SCHED_OVERHEAD_TRACE=y).

Use the script as follows. First, activate the scheduler that you are interested in (e.g., GSN-EDF). Then simply run ft-
trace-overheads (as root) with a given name to identify the experiment. While ft-trace-overheads is
running, execute your benchmark to exercise the kernel. When the benchmark has completed, terminate ft-trace-
overheads by pressing the enter key.

Example:

$ setsched GSN-EDF
$ ft-trace-overheads my-experiment
[II] Recording /dev/litmus/ft_cpu_trace0 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_cpu=0.bin
[II] Recording /dev/litmus/ft_cpu_trace1 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_cpu=1.bin
[II] Recording /dev/litmus/ft_cpu_trace2 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_cpu=2.bin
[II] Recording /dev/litmus/ft_cpu_trace3 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_cpu=3.bin
[II] Recording /dev/litmus/ft_msg_trace0 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_msg=0.bin
[II] Recording /dev/litmus/ft_msg_trace1 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_msg=1.bin
[II] Recording /dev/litmus/ft_msg_trace2 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_msg=2.bin
[II] Recording /dev/litmus/ft_msg_trace3 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=my-experiment_msg=3.bin
Press Enter to end tracing...
[run your benchmark]
[press Enter when done]
Ending Trace...
Disabling 4 events.
Disabling 4 events.
Disabling 4 events.
Disabling 4 events.
Disabling 18 events.
Disabling 18 events.
Disabling 18 events.

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 11/24

Disabling 18 events.
/dev/litmus/ft_msg_trace3: XXX bytes read.
/dev/litmus/ft_msg_trace0: XXX bytes read.
/dev/litmus/ft_msg_trace1: XXX bytes read.
/dev/litmus/ft_cpu_trace2: XXX bytes read.
/dev/litmus/ft_cpu_trace1: XXX bytes read.
/dev/litmus/ft_cpu_trace3: XXX bytes read.
/dev/litmus/ft_cpu_trace0: XXX bytes read.
/dev/litmus/ft_msg_trace2: XXX bytes read.

For performance reasons, Feather-Trace records overhead data into separate per-processor trace buffers, and treats
core-local events and inter-processor interrupts (IPIs) differently. Correspondingly, ft-trace-overheads records
two trace files for each core in the system.

1. The file overheads…cpu=$CPU.bin contains all overhead samples related to CPU-local events such as
context switches.

2. The file overheads…msg=$CPU.bin contains overhead samples stemming from IPIs such as reschedule
notifications related to the processor $CPU.

Key=Value Encoding

To aid with keeping track of relevant setup information, the tool encodes the system’s host name and the currently
active scheduler plugin in a simple key=value format in the filename.

We recommend to adopt the same encoding scheme in the experiment tags. For example, when running an experiment
named “foo” with (say) 40 tasks and a total utilization of 75 percent, we recommend to launch ft-trace-
overheads as ft-trace-overheads foo_n=40_u=75, as the additional parameters will be added
transparently to the final trace file name.

Example:

ft-trace-overheads foo_n=40_u=75
[II] Recording /dev/litmus/ft_cpu_trace0 -> overheads_host=rts5_scheduler=GSN-
EDF_trace=foo_n=40_u=75_cpu=0.bin
…

However, this convention is purely optional.

Automating ft-trace-overheads

It can be useful to terminate ft-trace-overheads from another script by sending a signal. For this purpose,
provide the -s flag to ft-trace-overheads, which will make it terminate cleanly when it receives the SIGUSR1
signal.

When recording overheads on a large platform, it can take a few seconds until all tracer processes have finished
initialization. To ensure that all overheads are being recorded, the benchmark workload should not be executed until
initialization is complete. To this end, it is guaranteed that the string “to end tracing…” does not appear in the script’s
output (on STDOUT) until initialization is complete on all cores.

A Tour of LITMUS RT TuToR 2016

MPI-SWS 12/24

What does Feather-Trace data look like?

Feather-Trace produces “raw” overhead files. Each file contains simple event records. Each event record consists of the
following fields (➞ see definition):

an event ID (e.g., SCHED_START),
the ID of the processor on which the event was recorded (0–255),
a per-processor sequence number (32 bits),
the PID of the affected or involved process (if applicable, zero otherwise),
the type of the affected or involved process (best-effort, real-time, or unknown),
a timestamp (48 bits),
a flag that indicates whether any interrupts occurred since the last recorded event, and
an approximate interrupt count (0–31, may overflow).

The timestamp is typically a raw cycle count (e.g., obtained with rdtsc). However, for certain events such as
RELEASE_LATENCY, the kernel records the time value directly in nanoseconds.

Note: Feather-Trace records data in native endianness. When processing data files on a machine with a different
endianness, endianness swapping is required prior to further processing (see ftsort below).

Event Pairs

Most Feather-Trace events come as pairs. For example, context-switch overheads are measured by first recording a
CXS_START event prior to the context switch, and then a CXS_END event just after the context switch. The context-
switch overhead is given by the difference of the two timestamps.

There are two event pairs related to scheduling: the pair SCHED_START-SCHED_END records the scheduling
overhead prior to a context switch, and the pair SCHED2_START-SCHE2D_END records the scheduling overhead
after a context switch (i.e, any clean-up).

To see which event records are available, simply record a trace with ft-trace-overheads and look through it
with ftdump (see below), or have a look at the list of event IDs (➞ see definitions).

Low-Level Tools

The feather-trace-tools repository provides three main low-level tools that operate on raw overhead trace files. These
tools provide the basis for the higher-level tools discussed below.

1. ftdump prints a human-readable version of a trace file’s contents. This is useful primarily for manual
inspection. Run as ftdump <MY-TRACE-FILE>.

2. ftsort sorts a Feather-Trace binary trace file by the recorded sequence numbers, which is useful to normalize
traces prior to further processing in case events were stored out of order. Run as ftsort <MY-TRACE-
FILE>. ftsort can also carry-out endianness swaps if needed. Run ftsort -h to see the available
options.

3. ft2csv is used to extract overhead data from raw trace files. For example, to extract all context-switch
overhead samples, run ft2csv CXS <MY-TRACE-FILE>. Run ft2csv -h to see the available options.

https://github.com/LITMUS-RT/feather-trace-tools/blob/master/include/timestamp.h#L18
https://github.com/LITMUS-RT/feather-trace-tools/blob/master/include/timestamp.h#L41

A Tour of LITMUS RT TuToR 2016

MPI-SWS 13/24

By default, ft2csv produces CSV data. It can also produce binary output compatible with NumPy’s float32
format, which allows for efficient processing of overhead data with NumPy’s numpy.memmap() facility.

High-Level Tools

The feather-trace-tools repository provides a couple of scripts around ftsort and ft2csv that automate common
post-processing steps. We recommend that novice users stick to these high-level scripts until they have acquired some
familiarity with the LITMUS tracing infrastructure.

Post-processing of (a large collection of) overhead files typically involves:

1. sorting all files with ftsort,
2. splitting out all recorded overhead samples from all trace files,
3. combining data from per-cpu trace files and from traces with different task counts, system utilizations, etc. into

merged data files for further processing,
4. counting how many events of each type were recorded,
5. shuffling and truncating all sample files, and finally
6. extracting simple statistics such as the observed median, mean, and maximum values.

Note that step 4 is required to allow a statistically meaningful comparison of the sampled maximum overheads. (That
is, to avoid sampling bias, do not compare the maxima of trace files containing a different number of samples.)

Corresponding to the above steps, the feather-trace-tools repository provides a number of scripts that automate these
tasks.

Sorting Feather-Trace Files

The ft-sort-traces script simply runs ftsort on all trace files. Invoke as ft-sort-traces <MY-TRACE-
FILES>. We recommended to keep a log of all post-processing steps with tee.

Example:

ft-sort-traces overheads_*.bin 2>&1 | tee -a overhead-processing.log

Sorting used to be an essential step, but in recent versions of LITMUS , most traces do not contain any out-of-order
samples.

Extracting Overhead Samples

The script ft-extract-samples extracts all samples from all provided files with ft2csv.

Example:

ft-extract-samples overheads_*.bin 2>&1 | tee -a overhead-processing.log

The underlying ft2csv tool automatically discards any samples that were disturbed by interrupts.

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 14/24

Combining Samples

The script ft-combine-samples combines several data files into a single data file for further processing. This
script assumes that file names follow the specific key=value naming convention already mentioned above:

<basename>_key1=value1_key2=value2...keyN=valueN.float32

The script simply strips certain key=value pairs to concatenate files that have matching values for all parameters that
were not stripped. For instance, to combine all trace data irrespective of task count, as specified by “n=”, invoke as
ft-combine-samples -n <MY-DATA-FILES>. The option --std combines files with different task counts
(_n=), different utilizations (_u=), for all sequence numbers (_seq=), and for all CPU IDs (_cpu= and _msg=).

Example:

ft-combine-samples --std overheads_*.float32 2>&1 | tee -a overhead-
processing.log

Counting Samples

The script ft-count-samples simply looks at all provided trace files and, for each overhead type, determines the
minimum number of samples recorded. The output is formatted as a CSV file.

Example:

ft-count-samples combined-overheads_*.float32 > counts.csv

Random Sample Selection

To allow for an unbiased comparison of the sample maxima, it is important to use the same number of samples for all
compared traces. For example, to compare scheduling overhead under different schedulers, make sure you use the
same number of samples for all schedulers. If the traces contain a different number of samples (which is very likely),
then a subset must be selected prior to computing any statistics.

The approach chosen here is to randomly shuffle and then truncate (a copy of) the files containing the samples. This is
automated by the script ft-select-samples.

Note: the first argument to ft-select-samples must be a CSV file produced by ft-count-samples.

Example:

ft-select-samples counts.csv combined-overheads_*.float32 2>&1 | tee -a
overhead-processing.log

The script does not modify the original sample files. Instead, it produces new files of uniform size containing the
randomly selected samples. These files are given the extension sf32 (= shuffled float32).

A Tour of LITMUS RT TuToR 2016

MPI-SWS 15/24

Computing Simple Statistics

The script ft-compute-stats processes sf32 or float32 files to extract the maximum, average, median, and
minimum observed overheads, as well as the standard deviation and variance. The output is provided in CSV format
for further processing (e.g., formatting with a spreadsheet application).

Note: Feather-Trace records most overheads in cycles. To convert to microseconds, one must provide the speed of the
experimental platform, measured in the number of processor cycles per microsecond, with the --cycles-per-
usec option. The speed can be inferred from the processor’s spec sheet (e.g., a 2Ghz processor executes 2000 cycles
per microsecond) or from /proc/cpuinfo (on x86 platforms). The LITMUS user-space library liblitmus also
contains a tool cycles that can help measure this value.

Example:

ft-compute-stats combined-overheads_*.sf32 > stats.csv

Complete Example

Suppose all overhead files collected with ft-trace-overheads are located in the directory $DIR. Overhead
statistics can be extracted as follows.

(1) Sort
ft-sort-traces overheads_*.bin 2>&1 | tee -a overhead-processing.log

(2) Split
ft-extract-samples overheads_*.bin 2>&1 | tee -a overhead-processing.log

(3) Combine
ft-combine-samples --std overheads_*.float32 2>&1 | tee -a overhead-
processing.log

(4) Count available samples
ft-count-samples combined-overheads_*.float32 > counts.csv

(5) Shuffle & truncate
ft-select-samples counts.csv combined-overheads_*.float32 2>&1 | tee -a
overhead-processing.log

(6) Compute statistics
ft-compute-stats combined-overheads_*.sf32 > stats.csv

RT

https://github.com/LITMUS-RT/liblitmus

A Tour of LITMUS RT TuToR 2016

MPI-SWS 16/24

Tracing a Schedule
Whereas Feather-Trace data records how long a scheduling decision or context switch takes, the sched_trace
interface instead records which tasks are scheduled at what point and corresponding job releases and deadlines.

Recording a Schedule with sched_trace

The main high-level tool for recording scheduling decisions is the script st-trace-schedule.

To record the execution of a task system, follow the following rough outline:

1. start recording all scheduling decisions with st-trace-schedule;
2. launch and initialize all real-time tasks such that they wait for a synchronous task system release (see the

release_ts utility in liblitmus);
3. release the task set with release_ts; and finally
4. stop st-trace-schedule when the benchmark has completed.

Example:

st-trace-schedule my-trace
CPU 0: 17102 > schedule_host=rts5_scheduler=GSN-EDF_trace=my-trace_cpu=0.bin
[0]
CPU 1: 17104 > schedule_host=rts5_scheduler=GSN-EDF_trace=my-trace_cpu=1.bin
[0]
CPU 2: 17106 > schedule_host=rts5_scheduler=GSN-EDF_trace=my-trace_cpu=2.bin
[0]
CPU 3: 17108 > schedule_host=rts5_scheduler=GSN-EDF_trace=my-trace_cpu=3.bin
[0]
Press Enter to end tracing...
[launch tasks]
[kick off experiment with release_ts]
[press Enter when done]
Ending Trace...
Disabling 10 events.
Disabling 10 events.
Disabling 10 events.
Disabling 10 events.
/dev/litmus/sched_trace2: XXX bytes read.
/dev/litmus/sched_trace3: XXX bytes read.
/dev/litmus/sched_trace1: XXX bytes read.
/dev/litmus/sched_trace0: XXX bytes read.

As the output suggests, st-trace-schedule records one trace file per processor.

What does sched_trace data look like?

A scheduling event is recorded whenever

A Tour of LITMUS RT TuToR 2016

MPI-SWS 17/24

a task is dispatched (switched to),
a task is preempted (switched away),
a task suspends (i.e., blocks), or
a task resumes (i.e., wakes up).

Furthermore, the release time, deadline, and completion time of each job are recorded, as are each task’s parameters
and the name of its executable (i.e., the comm field in the Linux kernel’s PCB struct task_struct). Finally, the
time of a synchronous task system release (if any) is recorded as a reference of “time zero”.

The tool st-dump may be used to print traces in a human-readable format for debugging purposes.

Drawing a Traced Schedule

The pycairo-based st-draw tool renders a trace as a PDF. By default, it will render the first one thousand
milliseconds after time zero, which is either the first synchronous task system release (if any) or the time of the first
event in the trace (otherwise).

Example:

st-draw schedule_host=rts5_scheduler=GSN-EDF_trace=my-trace_cpu=*.bin
Will render the schedule as schedule_host=rts5_scheduler=GSN-EDF_trace=my-
trace.pdf

Invoke st-draw -h for a list of possible options. If the tool takes a long time to complete, run it in verbose mode (-
v) and try to render a shorter schedule (-l).

Obtaining Job Statistics

The tool st-job-stats produces a CSV file with relevant per-job statistics for further processing with (for
example) a spreadsheet application.

Example:

st-job-stats schedule_host=rts5_scheduler=GSN-EDF_trace=my-trace_cpu=*.bin
Task, Job, Period, Response, DL Miss?, Lateness, Tardiness,
Forced?, ACET
task NAME=rtspin PID=17406 COST=590000 PERIOD=113000000 CPU=254
 17406, 3, 113000000, 17128309, 0, -95871691, 0,
0, 388179
 17406, 4, 113000000, 12138793, 0, -100861207, 0,
0, 382776
 17406, 5, 113000000, 7137743, 0, -105862257, 0,
0, 382334
 17406, 6, 113000000, 2236774, 0, -110763226, 0,
0, 382352
 17406, 7, 113000000, 561701, 0, -112438299, 0,
0, 559208

http://cairographics.org/pycairo/

A Tour of LITMUS RT TuToR 2016

MPI-SWS 18/24

 17406, 8, 113000000, 384752, 0, -112615248, 0,
0, 382539
 17406, 9, 113000000, 565317, 0, -112434683, 0,
0, 561602
 17406, 10, 113000000, 379963, 0, -112620037, 0,
0, 377526
[...]

There is one row for each job. The columns record:

1. the task’s PID,
2. the job sequence number,
3. the task’s period,
4. the job’s response time,
5. a flag indicating whether the deadline was missed,
6. the job’s lateness (i.e., response time minus relative deadline),
7. the job’s tardiness (i.e., max(0, lateness)),
8. a flag indicating whether the LITMUS budget enforcement mechanism inserted an artificial job completion,

and finally
9. the actual execution time (ACET) of the job.

Note that the Forced? flag is always zero for proper reservation-based schedulers (e.g., under P-RES). Forced job
completion is an artefact of the LITMUS legacy budget enforcement mechanism under process-based schedulers
(such as GSN-EDF or P-FP).

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 19/24

Writing Real-Time Tasks From Scratch
The tools used so far — primarily, rtspin and rt_launch — are useful for illustrative purposes and to exercise
scheduler plugins. However, to actually deploy real real-time workloads on LITMUS , closer integration with the
system is required. To this end, we discuss in the following how to write real-time tasks that use the LITMUS API
“from scratch.”

Note that the following is intended as a brief tutorial to provide a starting point. Giving a comprehensive survey of the
entire LITMUS API and user-space environment is beyond the scope of this guide.

We begin with the most basic case, a simple periodic task.

A Minimal Periodic Task

First, we require a couple of standard system headers for I/O and related tasks.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

The main header to include for functionality specific to LITMUS is litmus.h, which is provided by liblitmus.

#include <litmus.h>

We now define the task parameters. Note that this may be determined dynamically at runtime (e.g., via passed
parameters, as done by rtspin and rt_launch). The main thing to note is that the LITMUS API expects times
to be specified in nanoseconds. The ms2ns() helper function provided by liblitmus comes in handy in specifying
these parameters more legibly in millisecond granularity.

#define PERIOD ms2ns(1000)
#define DEADLINE ms2ns(1000)
#define EXEC_COST ms2ns(50)

Before going further, it is worth emphasizing that virtually all LITMUS APIs can fail at runtime. It is therefore good
practice — and strongly recommended — to carefully check all return values. To this end, we define a simple macro
for ensuring that syscalls do not fail.

#define CALL(exp) do { \
 int ret; \
 ret = exp; \
 if (ret != 0) \
 fprintf(stderr, "%s failed: %m\n", #exp); \
 else \
 fprintf(stderr, "%s ok.\n", #exp); \
 } while(0)

The periodic task that we implement is very simple. It increments a counter and then signals exit after ten jobs have
been processed.

RT

RT

RT

RT

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 20/24

int i = 0;

int job(void)
{
 i++;
 if (i >= 10)
 return 1;
 return 0;
}

Next, we define the main program and loop that defines the period task. The variable params of type struct
rt_task will hold all information related to this task relevant to the kernel.

int main()
{
 int do_exit;
 struct rt_task params;

First, we call init_litmus(), which initializes the data structures within liblitmus and is mandatory in order
to correctly use liblitmus.

 CALL(init_litmus());

We now set up the parameters for this task by filling in the struct rt_task.

 init_rt_task_param(¶ms);
 params.exec_cost = EXEC_COST;
 params.period = PERIOD;
 params.relative_deadline = DEADLINE;

Note that we first call init_rt_task_param() to populate the struct with default values. It is recommended to
always first call init_rt_task_param() because the layout of struct rt_task changes from version to
version (e.g., sometimes newer LITMUS kernels require new fields to be added). Using
init_rt_task_param() ensures that all fields have sensible defaults values and thus aids with portability.

After the struct rt_task has been populated, we invoke the system call set_rt_task_param() with the
thread ID of the current process to communicate the desired configuration to the kernel.

 CALL(set_rt_task_param(gettid(), ¶ms));

In LITMUS , processes start out as background processes and need to be “transitioned” into real-time mode. This is
done via the task_mode() function in liblitmus. Note that set_rt_task_param() simply communicates
the configuration to the kernel; it does not yet transition the task into real-time mode, which must be accomplished
explicitly with the task_mode() API.

 CALL(task_mode(LITMUS_RT_TASK));

At this point, the process is running as a LITMUS real-time task.

RT

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 21/24

However, we do not yet want the task to commence the actual real-time computation, for the following reason. In a
real system, there is most likely more than one task, and various tasks may depend on one another in complex ways.
To ensure that the system is in a consistent state and ready for execution, the real-time task should wait at this point
until all tasks of the task system have finished initialization. For this purpose, LITMUS provides an API for
signaling (synchronous) task system releases, as already mentioned before in the context of rtspin and rt_launch
(recall the -w flag).

To await the release of the entire task system, which signals that the initialization phase has finished, we simply call
the LITMUS API wait_for_ts_release().

CALL(wait_for_ts_release());

This call returns only after the user has run release_ts (or some other process that calls the release_ts()
API).

What follows is the main loop of the task. We expect the job function to return whether the loop should exit. (In our
simple example, this is signaled by returning 1 when the counter reaches 10.) The key is the
sleep_next_period() function, which ensures that the job function is invoked only once per period.

 // Do real-time stuff
 do {
 sleep_next_period();
 do_exit = job();
 printf("%d\n", do_exit);
 } while(!do_exit);

In a real application, do_exit could (for example) be set by a signal handler that is invoked when the system is
shutting down the real-time task.

Once we are done, we simply transition back to non-real-time mode using again the task_mode() function and then
exit from main().

 CALL(task_mode(BACKGROUND_TASK));

 return 0;
}

This basic skeleton achieves periodic real-time execution under global schedulers.

Partitioned Schedulers

Under partitioned or clustered scheduling, the task needs to carry out two additional steps as part of its initialization.
Let PARTITION denote the ID of the partition/cluster on which the task should be executed.

1. Migrate to the correct partition/cluster with CALL(be_migrate_to_domain(PARTITION)) prior to
transitioning into real-time mode.

2. Fill in the field cpu of struct rt_task as follows:
param.cpu = domain_to_first_cpu(PARTITION);

RT

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 22/24

The call to be_migrate_to_domain() ensures that the process is running on (one of) the processor(s) that
form(s) the partition/cluster after the call returns. The be_ prefix indicates that the function is available only to non-
real-time tasks, i.e., it must be called before transitioning the process into real-time mode.

The call to domain_to_first_cpu() translates a logical domain or cluster ID into a physical core number. This
translation layer is useful because, on some systems, physical core IDs are not stable across reboots, so it is more
convenient to say “this task belongs to the 3rd cluster as defined by shared L2 caches” rather than identifying which
physical cores actually share an L2 cache.

A Minimal Event-Driven Task

From the point of view of the LITMUS API, the structure and initialization of an event-driven task is identical to
that of a periodic task. The only major difference to a periodic task is simply the main loop of the task.

In the interest of brevity, we do not report the common parts and focus on the main loop instead in the following.

Event-Driven Main Loop

For simplicity, we use STDIN as our “input event channel” (i.e., as the file descriptor from which we receive new
events). In a real application, this could (for example) be a device file (e.g., /dev/my-sensor) or a UDP, raw
Ethernet, or CAN socket.

The main difference to the periodic task example above is that we do not call sleep_next_period().

 ...
 // Do real-time stuff
 do {
 do_exit = job();
 } while(!do_exit);
 ...

Instead, the task simply blocks on the file descriptor from which it receives input events (STDIN in this case). To this
end, we call read() on the standard input file descriptor at the beginning of each job.

int job(void) {
 char buffer[80];
 CALL(read(STDIN_FILENO, buffer, sizeof(buffer)));
 buffer[79] = 0;

When an event is triggered, the read() unblocks (i.e., the process is resumed) and the “event” is made available to
the job, which prints the message unless it receives the word ‘exit’.

 if (strcmp(buffer, "exit") == 0)
 return 1;
 else {
 printf("%s\n", buffer);
 return 0;
 }

RT

A Tour of LITMUS RT TuToR 2016

MPI-SWS 23/24

}

Note that even though there is no explicit call to sleep_next_period(), the classic scheduler plugins still police
budgets and enforce minimum inter-arrival times for new jobs (as specified by the parameter period in struct
rt_task).

Reservation-based plugins such as P-RES also enforce budgets and inter-arrival times (or, really, minimum
replenishment time separation), but do so based on the reservation parameters as configured with resctl (and ignore
task parameters).

A Faux Event Source

For a quick way to demonstrate event-driven activation, we create a named FIFO using the mkfifo command and
give that as the standard input to our event-driven task. As a result, it will block when trying to read from STDIN.

Suppose example_event is the binary of our event-driven real-time task. To manually trigger events, we work with
two terminal windows from now on.

Terminal 1:
===========
mkfifo input
./example_event < input

Events can be triggered by redirecting STDOUT to the FIFO. However, due to the way named FIFOs work in Linux,
we need a long-running process that keeps the FIFO open. Here we just call sleep for a long time and redirect its
output to the named FIFO to keep it open.

Terminal 2:
===========
sleep 1000 > input &
The preceding command is needed to make sure
the FIFO is not closed by the echo processes invoked below.
[1] 7009
echo "hello" > input
echo "world" > input
echo "exit" > input

It should be apparent that the example task running in the first terminal is indeed triggered by the events generated in
the second terminal. By giving the task running in the first terminal a large period and a small budget (e.g., several
seconds and one millisecond, respectively), the effects of budget enforcement and minimum inter-arrival-time
separation can be easily observed by manually triggering many events with short inter-arrival times.

Skeleton Real-Time Tasks: base_task and base_mt_task

To provide an easy starting point for the development of custom real-time tasks, liblitmus comes with two
example skeletons of periodic tasks that are known to compile and work.

A Tour of LITMUS RT TuToR 2016

MPI-SWS 24/24

The file bin/base_task.c contains an example sequential, single-threaded real-time task, which we recommend
as a basis for developing real-time tasks using the liblitmus API.

The template in the file bin/base_mt_task.c is slightly more involved and shows how to build a multithreaded
real-time process, where each thread corresponds to a sporadic task.

