
 1

Installing LITMUS-RT on Raspbian OS

Table of Contents

Prerequisites ... 2
Installing Raspbian OS .. 2
Obtaining default kernel configuration ... 2
Kernel cross-compilation ... 3
Installing liblitmus and feather-trace-tools ... 7
Creating a user space linked with liblitmus ... 8
Important links and further reading .. 9

IMPORTANT NOTE: If you find that over the time some of the instructions cannot be
performed, let me know at filipmarkovic.fm@gmail.com so that we can constantly update this
guide.

Filip Marković
(Mälardalen University, Sweden)

 2

Prerequisites

• Preferably Ubuntu host (since this tutorial used it) but you may try some other Linux
derivation.

• (On your Ubuntu host): Downloaded Raspbian image: 2017-07-05-raspbian-jessie or
2017-06-21-raspbian-jessie. Both of them (light and full versions) worked with my
Raspbian Pi 3. You can obtain an image on the following URL:
https://downloads.raspberrypi.org/raspbian/images/

• SD card reader, and SD card above 8GB.
• Raspberry Pi 2 or 3: those two are successfully tested, but you may try the tutorial

with any other. It should work as well (only few steps differ, and they are covered)

Installing Raspbian OS

First, install Raspbian image on your Raspberry Pi. We will describe the instructions using
balenaEtcher tool.

1. Install and Open balenaEtcher,
2. Plug in your SD card into SD card reader
3. Select image (point to your Raspbian image that you previously downloaded)
4. Select drive (point to your SD card)
5. Flash.

When the process is finished, your SD card will contain two partitions, one boot FAT32, and
one root EXT4. If you use any other install method, just be sure that the same partition types
are created as well.

Obtaining default kernel configuration

In these steps, we will obtain a kernel configuration file from the installed Raspbian OS.

Put the SD card to the Raspberry card slot and turn on your Raspberry Pi. Wait for it to boot,
and then generate config.gz file. We do this step by running the following command on the
Raspbian system:

sudo modprobe configs

and config.gz file will be located in the proc/ directory. Copy this file and paste it to some
user-space directory, because proc/ directory is emptied once the device is turned off. Of
course, remember the location of the file. Now, turn off raspberry and insert SD card into the
SD card reader.

Next, on the Ubuntu host, plug in the SD card reader and perform the following steps.

In these steps, we will obtain a raspberry pi Linux kernel repository on our Ubuntu host, then
we will patch Litmus-RT to the Linux kernel repository.

First, clone the Raspberry pi Linux kernel repository (This will generate linux/ directory):

 3

git clone https://github.com/raspberrypi/linux.git

cd linux

git checkout rpi-4.9.y-stable

Now, add the Litmus-RT repository and fetch it within previously generated linux/ directory.

git remote add litmus https://github.com/LITMUS-RT/litmus-rt.git
git fetch litmus
git remote -v

At the end, we cherry-pick the commits from litmus branch and apply them onto the raspberry
pi Linux kernel (present in linux/ dir) with the following command.

git cherry-pick rpi-4.9.y-stable..litmus/linux-4.9-litmus

if there is an error “Apr 6 19:38… error: commit ae76… is a merge but no -m option was
given”, try to cherry-pick the exact commit. Perform the following ONE BY ONE:

git cherry-pick -m 1 ae762a4dbb7020692f53358e0cb6aa9a923edf48
git commit –-allow-empty
git cherry-pick --continue

Kernel cross-compilation

First, we install all necessary libraries for Raspbian kernel cross-compilation

$ sudo apt-get install libncurses5-dev libncursesw5-dev

Install toolchain on your Linux host (in my case Ubuntu). You probably can reduce the
following steps by just performing:

apt install gcc-arm-linux-gnueabihf

SKIP BEGIN __

But if the previous command does not work, then:
Use the following commands to download the toolchain to the home directory:

git clone https://github.com/raspberrypi/tools ~/tools
// or just

 4

Updating the $PATH environment variable makes the system aware of file locations needed
for cross-compilation. On a 32-bit host system you can update and reload it using:

echo PATH=\$PATH:~/tools/arm-bcm2708/gcc-linaro-arm-linux-
gnueabihf-raspbian/bin >> ~/.bashrc
source ~/.bashrc

If you are on a 64-bit host system, you should use:

echo PATH=\$PATH:~/tools/arm-bcm2708/gcc-linaro-arm-linux-
gnueabihf-raspbian-x64/bin >> ~/.bashrc
source ~/.bashrc

SKIP END ____________ ___

Prior cross-compiling the kernel, we first need to configure the current configuration file
from our Raspbian OS, because we use this config file to generate new kernel files which
include LITMUS-RT.

Copy the previously remembered config.gz file into your Ubuntu host system and extract it
inside the linux/ (git source) directory with the following command. After this step, you
obtain the .config file which has all the information about the default kernel configuration.

zcat config.gz > <path-to-git-linux-directory>/linux/.config

Then, run the following command for cross-compilation to configure the current kernel
configuration file (.config), using menuconfig parameter:

cd linux
KERNEL=kernel7
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig

To configure the kernel, the following steps are necessary:

1. Add a recognizable local version, such as –litmus (or whatever you want). It is used to
show that you are running the compiled kernel. This will be necessary after we have
the running kernel on the board in order to insure what kernel is currently running.
This can be entered under General setup->Local version - append to kernel release.

2. Enable in-kernel preemptions. This can be set under Kernel features->Preemption
model. Choose Preemptible Kernel (Low-Latency Desktop).

3. Disable group scheduling. First, disable the Automatic process group scheduling
option under General setup. Second, under General setup->Control group
support->CPU controller, disable Group scheduling for SCHED_OTHER

4. Disable frequency scaling and power management options that affect timer frequency.
Under General setup->Timers subsystem->Timer tick handling, set the option to
constant rate, no dynticks. Under Power management options, make sure that
Suspend to RAM and standby, Hibernation and Opportunistic sleep are disabled.

 5

Under CPU Power Management->CPU Frequency scaling, disable CPU
Frequency scaling.

5. When planning to do development, enable tracing in LITMUS^RT. Under
LITMUS^RT- >Tracing, enable TRACE() debugging. Note that this is a high-
overhead debug tracing interface that must not be enabled for any benchmarks or
production use of the system

Now, cross-compile the kernel with the following command, this might take some time, so
add more processors with the -j parameter.

Note that:

• KERNEL=kernel7 is a command for Pi 2, Pi 3, Pi 3+, or Compute Module 3.
• For Pi 1, Pi Zero, Pi Zero W, or Compute Module, try to execute KERNEL=kernel

instead,
• and for Pi 4, execute KERNEL=kernel7l

KERNEL=kernel7
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -j 2

 then for any R-Pi, execute the following:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage modules
dtbs -j 2

Having built the kernel, you need to copy it onto your Raspberry Pi (i.e. its SD card) and
install the modules. This is best done directly using an SD card reader.

First, use lsblk on your Linux host (Ubuntu in my case) before and after plugging your SD
card, in order to identify it. You should end up with something like this:

sdb
 sdb1
 sdb2

with sdb1 being the FAT (boot) partition, and sdb2 being the ext4 filesystem (root) partition.

If it's a NOOBS card, you should see something like this:

sdb
 sdb1
 sdb2
 sdb5
 sdb6
 sdb7

with sdb6 being the FAT (boot) partition, and sdb7 being the ext4 filesystem (root) partition.

 6

Create the following directories (preferably in home directory). Then mount them with SD
card partitions (adjusting the partition numbers for NOOBS cards if necessary):

mkdir mnt
mkdir mnt/fat32
mkdir mnt/ext4
sudo mount /dev/sdb1 ~/mnt/fat32
sudo mount /dev/sdb2 ~/mnt/ext4

Then, go back to linux/ directory and install kernel modules to the previously mounted
directories:

cd linux
sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
INSTALL_MOD_PATH=~/mnt/ext4 modules_install

In the mounted directories, check the installed files with ls -a, and then copy all the kernel
related files and directories from linux/ to the SD card of your R-pi, with the following
commands:

cd // go in the parent directory of mnt/ and backup kernel.img

sudo cp mnt/fat32/$KERNEL.img mnt/fat32/$KERNEL-backup.img

// go back to linux/ directory and copy files to SD card

cd linux

sudo cp arch/arm/boot/zImage ~/mnt/fat32/$KERNEL.img
sudo cp arch/arm/boot/dts/*.dtb ~/mnt/fat32/
sudo cp arch/arm/boot/dts/overlays/*.dtb* ~/mnt/fat32/overlays/
sudo cp arch/arm/boot/dts/overlays/README ~/mnt/fat32/overlays/
sudo umount ~/mnt/fat32
sudo umount ~/mnt/ext4

Insert the SD card in the RapsberryPi and boot.

• For image 2017-07-05-raspbian-jessie, you need to wait for approximately 5 minutes
in order for boot to finish. After that, power-off -p, and reboot.

• Note: If boot hangs at “random: crng init done”, just unplug and plug Rpi again. This
happened to me on lite Raspbian image. However, after a new reboot, everything
worked.

Finally, check if uname -r gives you the linux version (in my case 4.9.80-litmus+) and if
the following command yields LITMUS schedulers:

$ cat /proc/litmus/plugins/loaded

 7

Installing liblitmus and feather-trace-tools

In your R-Pi, update the following packages in order to be able to compile liblitmus and
feather-trace tools:

sudo apt install libncurses-dev git libssl-dev

navigate to some directory where you want to add litmus, liblitmus and feather-trace
directories. It is recommended that they have the same parent directory. In my case, I created
a directory named “litmus-related” in “opt/” directory. (Note: change write privileges if
necessary since opt/ directory is in the root space)
To install liblitmus, we first need to git clone litmus-rt

git clone https://github.com/LITMUS-RT/litmus-rt.git

Then, we clone litmus repository in the same parent directory

git clone https://github.com/LITMUS-RT/liblitmus.git

and after that we just execute:

cd liblitmus
make

Note: if you do not have the same parent directory for litmus-rt and liblitmus directories, then
you need to download .config file, using the main guide page (available in links at the end)

IMPORTANT: Now you need to add the PATH to the liblitmus directory to your .basrc file
(positioned in /root/ or/and your user home ~/), in order to be able to execute liblitmus
functions:

nano .bashrc

add the following line at the end of the file and afterwards run “source .bashrc”

export PATH=/opt/litmus-related/liblitmus:$PATH

Also, in order to run setsched command, you need to install dialog, as follows:

apt-get install dialog

To install feather-trace-tools, perform git clone in the parent directory, as in official LITMUS-
RT guide:

 8

git clone https://github.com/LITMUS-RT/feather-trace-tools.git

upon successful cloning, change directory to feather-trace-tools, and then compile:

make

Note, you should also add feather-trace-tools directory to the $PATH,

export PATH=/opt/litmus-related/liblitmus:/opt/litmus-
related/feather-trace-tools:$PATH

Now, as a test, try to set a scheduler to partitioned fixed-priority mode with:

sudo su
setsched P-FP
showsched

To use the commands with sudo only, type sudo visudo and insert the above paths into a
variable called secure path.

In the next section of this tutorial, we create a user-space which is linked with LIBLITMUS,
where we can create our own real-time tasks.

Creating a user-space linked with liblitmus

First, in the parent directory of liblitmus, litmus-rt and feather-trace-tools, create a new
directory, e.g. called mytools/.

mkdir mytools

and then the src/ directory:

cd mytools
mkdir src

Finally, add the mytools directory to the PATH variable in your .bshrc file.

export PATH=/opt/litmus-related/liblitmus:/opt/litmus-
related/feather-trace-tools:/opt/litmus-related/mytools:$PATH

 9

Important links and further reading

In order to create your own tasks within user-space, trace their execution, and perform other
Liblitmus operations, refer to:

https://wiki.litmus-rt.org/litmus/LinkAgainstLiblitmusTutorial

http://www.litmus-rt.org/tutorial/manual.html#writingreal-timetasksfromscratch

And other documentation available at http://www.litmus-rt.org/

Other links that were helpful for this tutorial are:

http://www.litmus-rt.org/installation.html

https://www.raspberrypi.org/documentation/linux/kernel/building.md

https://lists.litmus-rt.org/pipermail/litmus-dev/attachments/20180518/abc5a917/attachment-
0001.pdf

Many thanks to people who worked and are still working on Litmus-RT, and Mercea
Otniel Bogdan who created a tutorial for LITMUS-RT installation on ArchLinux!

