
LITMUSRT: A Hands-On Primer

Manohar Vanga, Mahircan Gül, Björn Brandenburg

MPI-SWS, Kaiserslautern, Germany

Goals

• A whirlwind tour of LITMUSRT
• Working with scheduler plugins.
• Running real-time tasks under global & partitioned schedulers
• Synchronous release
• Working with reservations

• Tracing and visualizing schedules
• Writing real-time tasks using liblitmus

• Overhead tracing with Feather-Trace

1

Goals

Slides for this tutorial available at
http://litmus-rt.org/tutorial/tutorial-slides.pdf

More extensive and detailed LITMUSRT manual at
http://litmus-rt.org/tutorial/manual.html

2

http://litmus-rt.org/tutorial/tutorial-slides.pdf
http://litmus-rt.org/tutorial/manual.html

Preliminaries

Before We Begin...

Setup your environment by following the instructions at
http://litmus-rt.org/tutorial/

1. Install VirtualBox (http://virtualbox.org)
2. Download the LITMUSRT playground image (http://

litmus-rt.org/tutorial/litmus-2016.1.qcow.tar.gz)
3. Create a new VirtualBox VM using the LITMUSRT image

3

http://litmus-rt.org/tutorial/
http://virtualbox.org
http://litmus-rt.org/tutorial/litmus-2016.1.qcow.tar.gz
http://litmus-rt.org/tutorial/litmus-2016.1.qcow.tar.gz

Before We Begin...

This is a hands-on tutorial!

You should follow along by typing out commands highlighted in
orange in a root shell.

$ echo "Hello World"
Hello World

4

Before We Begin...

Boot up into LITMUSRT (default boot option in GRUB).
$ uname -a
Linux litmus 4.1.3+ #1 SMP Mon Apr 4 19:00:57
CEST 2016 x86_64 x86_64 x86_64 GNU/Linux

After booting up the VM,

1. Open up the terminal
2. Login as root (password: litmus)
3. Navigate to /sandbox

litmus@litmus:~$ sudo su
Password:
root@litmus:/home/litmus# cd /sandbox
root@litmus:/sandbox#

5

A Whirlwind Tour of LITMUSRT

Available Schedulers

LITMUSRT provides a whole bunch of schedulers out-of-the-box!
$ cat /proc/litmus/plugins/loaded
PFAIR
P-FP
P-RES
PSN-EDF
GSN-EDF
Linux

6

showsched: Display Current Scheduler

The current scheduler can be viewed using the showsched
command.

$ showsched
Linux

The default scheduler after boot is the Linux scheduler (dummy
LITMUSRT scheduler that defers all scheduling decisions to
Linux’s CFS scheduler).

7

setsched: Set Scheduler

We can enable a new scheduler using the setsched command.
$ setsched GSN-EDF
$ showsched
GSN-EDF

After enabling a LITMUSRT plugin, the CFS scheduler continues
to co-exist (at a lower level in the Linux scheduler hierarchy) to
run non-RT background workloads.

8

Real-Time Processes in LITMUSRT

Bunch of ways to create real-time processes in LITMUSRT

• rt_launch: utility to run an arbitrary process as a real-time
process.

• rtspin: dummy spinning task for use in experiments.
• liblitmus-based: custom tasks can be written using the

LITMUSRT C API provided by liblitmus.

Up Next: rt_launch and rtspin under GSN-EDF and P-FP.

(Examples of using the liblitmus API at the end of the talk.)

9

rt_launch: Launching a Real-Time Process

rt_launch provides a simple way to run an arbitrary binary as a
real-time process.

rt_launch WCET PERIOD -- PROGRAM ARGS

Hands-On Demo: run a real-time web server in one command!
$ rt_launch 50 100 -- /usr/sbin/lighttpd \

-f /etc/lighttpd/lighttpd.conf
$ firefox 127.0.0.1
$ killall lighttpd

10

rt_launch: Built-In Help

Lots more functionality. See built-in help (-h)
$ rt_launch -h

• Specify a priority (highest=1, lowest=511)
• Assign a relative deadline
• Specify a phase
• Wait for synchronous release

And lots more!

11

rtspin: Dummy Spinning Task

rtspin provides a dummy, spinning task for testing purposes.
rtspin OPTIONS WCET PERIOD DURATION

Hands-On Demo: run a dummy task with 10ms WCET and
100ms period for 5 seconds.

$ rtspin -v 10 100 5

The -v option prints out per-job information:
rtspin/2082:2 @ 100.3752ms

deadline: 120709165733ns (=120.71s)
current time: 120.61s, slack: 99.59ms
target ACET: 10.00ms (100.00% of WCET)

12

P-FP: Partitioned Fixed-Priority Scheduler

So far, we’ve been working with global scheduling (GSN-EDF).

We now look at some specifics of working with partitioned
schedulers.

$ setsched P-FP

13

rtspin Usage with P-FP

Under P-FP: Need to additionally specify a partition (-p)

Valid range from 0 to m − 1 (where m is the no. of processors).

Example: run a dummy task with 10ms WCET and 100ms period
for 5 seconds on processor 1 at the lowest priority.

$ rtspin -v -p 1 10 100 5

14

rtspin Usage with P-FP

Under P-FP: Need to additionally specify a priority (-q)

Valid range from 1 (highest) to 511 (lowest).

Example: run a dummy task with 10ms WCET and 100ms period
for 5 seconds on processor 1 with priority 1 (highest).

$ rtspin -v -p 1 -q 1 10 100 5

15

Synchronous Release

Synchronous Release with release_ts

Often, we want to perform a synchronous release: releasing all
tasks at once.

We can make rtspin wait for a synchronous release to occur
before starting (-w option).

$ rtspin -v -w -p 1 10 100 5 &

Note: The trailing & starts the process in the background and is
useful for scripting the creation of multiple waiting tasks.

16

Synchronous Release with release_ts

Hands-On Demo: create 2 rtspin tasks on one processor 1 that
wait for synchronous release.

$ rtspin -v -w -p 1 -q 1 5 50 5 &
$ rtspin -v -w -p 1 -q 2 10 100 5 &

We can view information on waiting tasks via
/proc/litmus/stats.

$ cat /proc/litmus/stats
real-time tasks = 2
ready for release = 2

The release_ts command releases all waiting tasks.
$ release_ts
Released 2 real-time tasks.

17

Tracing and Visualizing Schedules

Scheduler Tracing: Overview

Two tracing mechanisms: Feather-Trace and sched_trace

Feather-Trace: Generic tracing framework used for measuring
scheduler overheads.

sched_trace: records which tasks are scheduled at what point,
and corresponding job releases and deadlines. Useful for acquiring
job statistics and visualizing schedules.

18

Demo: Tracing and Visualizing Schedules

Hands-On Demo: Record and visualize a scheduling trace, as well
as retrieve job-level information.

Create a new working directory for this demo:
$ mkdir /sandbox/st-demo
$ cd /sandbox/st-demo

19

Recording Traces

To record the execution of a task system:

1. Start recording scheduling decisions with
st-trace-schedule

2. Launch and initialize real-time tasks and wait for a
synchronous release

3. Release tasks (with release_ts)
4. Stop st-trace-schedule when the benchmark has

completed.

Switch to GSN-EDF for next example:
$ setsched GSN-EDF

20

Recording Traces: Hands-On Demo

Start recording scheduling traces.
$ st-trace-schedule my-trace

CPU 0: 2950 > schedule_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0.bin [0]
CPU 1: 2952 > schedule_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1.bin [0]
Press Enter to end tracing...

21

Recording Traces: Hands-On Demo

Open up a new tab as root and create some waiting rtspin tasks.
$ rtspin -w 10 100 5 &
[1] 3003
$ rtspin -w 20 50 5 &
[2] 3004
$ rtspin -w 5 30 5 &
[3] 3005
$ rtspin -w 5 20 5 &
[4] 3006

Now release them with release_ts and wait for them to finish:
$ release_ts
Released 4 real-time tasks.
$ wait

22

Recording Traces: Hands-On Demo

Stop recording traces by pressing ENTER on st-trace-schedule

Ending Trace...
Disabling 10 events.
Disabling 10 events.
/dev/litmus/sched_trace1: 10584 bytes read.
/dev/litmus/sched_trace0: 10176 bytes read.

23

Visualizing Schedules with st-draw

st-draw allows to easily visualize schedules:
$ st-draw *.bin
$ evince *.pdf

Life saver when it comes to debugging! See st-draw -h for more
command line options.

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

rtspin/2747
(10.00ms, 100.00ms)

rtspin/2748
(20.00ms, 50.00ms)

rtspin/2749
(5.00ms, 30.00ms)

rtspin/2750
(5.00ms, 20.00ms)

0

0 0

0 0

0

1

1

1

1

1 1

1

1 1

1

24

Release Latency in Virtual Machines

Caution: Timing within virtual machines is inaccurate due to the
overhead of virtualization. This can result in large release latency
(2̃ms in the example below).

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

rtspin/2747
(10.00ms, 100.00ms)

rtspin/2748
(20.00ms, 50.00ms)

rtspin/2749
(5.00ms, 30.00ms)

rtspin/2750
(5.00ms, 20.00ms)

0

0 0

0 0

0

1

1

1

1

1 1

1

1 1

1

Release Latency

Release latency is orders of magnitude lower on real hardware.

25

Job Statistics with st-job-stats

st-job-stats allows to easily obtain job statistics from a
scheduling trace.

$ st-job-stats *my-trace*.bin | head

Task, Job, Period, Response, DL Miss?, Lateness, Tardiness, Forced?, ACET
task NAME=rtspin PID=3783 COST=10000000 PERIOD=100000000 CPU=0
3783, 2, 100000000, 21238, 0, -99978762, 0, 0, 2642
3783, 3, 100000000, 11318100, 0, -88681900, 0, 0, 10022417
3783, 4, 100000000, 20907624, 0, -79092376, 0, 0, 10009508
3783, 5, 100000000, 11308376, 0, -88691624, 0, 0, 10043864
3783, 6, 100000000, 20336977, 0, -79663023, 0, 0, 9999738

Lots of other useful data available:

• Response time of each job
• Flag specifying if the job missed a deadline
• Job lateness, tardiness
• Actual execution time of job

26

Working with Reservations

P-RES Plugin: Reservations in LITMUSRT

P-RES is a reservation-based scheduling plugin in LITMUSRT.
$ setsched P-RES

Supports a set of partitioned uniprocessor reservations of the
following types:

• periodic polling server
• sporadic polling server
• table-driven reservations

P-RES support EDF, FP, as well as table-driven scheduling (time
partitioning).

27

P-RES Plugin: Reservations in LITMUSRT

Basic workflow for working with reservations:

1. Create a reservation on a specific core
2. Start a real-time task attached to a reservation

28

P-RES Plugin: Reservations in LITMUSRT

Each reservation has a reservation ID (RID) in P-RES

• Must be explicitly assigned when creating reservations.
• Must be unique per core.

Important to specify the processor both when creating reservations
and when attaching processes to reservations.

29

Creating a Reservation with resctl

The resctl command can be used to create reservations.

Hands-On Demo: Create a new sporadic polling reservation with
RID 123 on core 1.

$ resctl -n 123 -t polling-sporadic -c 1

By default, budget is 10ms with a replenishment period of 100ms.

Hands-On Demo: Create a sporadic polling reservation with RID
234 on core 1 with a budget of 25ms and a replenishment period
of 50ms

$ resctl -n 234 -t polling-sporadic -c 1 -b 25 -p 50

30

Creating a Reservation with resctl

The resctl command has many more options. See built-in help.
$ resctl -h

• Assigning priorities to reservations
• Specify a relative deadline
• Specify a phase

And more!

31

Assign rtspin Tasks to Reservations

Tasks are not assigned priorities directly. Instead priorities assigned
to reservations (using the -q option with resctl)

Tasks are just attached to reservations at creation time.

Hands-On Demo: create rtspin task with 10ms WCET and
100ms period for 5 seconds on core 1, and attach it to previously
created reservation (RID 234)

$ rtspin -v -p 1 -r 234 10 100 5

32

Overloading Reservations with a Large Budget

Setting a task budget higher than the available reservation budget
results in job tardiness.

Hands-On Demo: create rtspin task with 30ms WCET and
50ms period for 5 seconds on core 1, and attach it to previously
created reservation (RID 234, with budget 25ms and period 50ms).

$ rtspin -v -p 1 -r 234 30 50 5

Jobs are tardy as is indicated by the negative slack in the output:
...
rtspin/2908:86 @ 5006.4201ms

deadline: 3312509325918ns (=3312.51s)
current time: 3313.22s, slack: -706.44ms
target ACET: 30.00ms (100.00% of WCET)

...
33

Overloading Reservations with Short Periods

Setting a task period lower than the reservation period results in
job tardiness.

Hands-On Demo: create rtspin task with 25ms WCET and
40ms period for 5 seconds on core 1, and attach it to previously
created reservation (RID 234, with budget 25ms and period 50ms).

$ rtspin -v -p 1 -r 234 25 40 5

Jobs are tardy as is indicated by the negative slack in the output:
...
rtspin/2909:104 @ 5006.4731ms

deadline: 3573540213389ns (=3573.54s)
current time: 3574.39s, slack: -846.54ms
target ACET: 25.00ms (100.00% of WCET)

...
34

Table-Driven Reservations

Table-Driven Reservations

Under P-RES, reservations can be scheduled via a
periodically-repeating, statically-defined scheduling table (a la
ARINC 653 time-partitioned scheduling).

The workflow remains the same as for the other reservation types:

1. Create one or more table-driven reservations using resctl
(now additionally specified with a static schedule).

2. Attach one or more tasks to each table-driven reservation.

35

Specifying Static Schedules for Reservations

The static scheduler for a table-driven reservation is specified using
two parameters:

• Major cycle (M): Period of the scheduling table (i.e., at
runtime, the schedule repeats every M milliseconds).

• Scheduling Slots: A sequence of non-overlapping scheduling
intervals relative to the start of the major cycle.

36

Specifying Static Schedules Using resctl

Example: Create a table-driven reservation on core 1 with ID 100
having a major cycle of 200ms and scheduled every alternate 50ms.

$ resctl -n 100 -c 1 -t table-driven \
-m 200 '[0, 50)' '[100, 150)'

The above results in the following scheduling table:

200 ms0 ms 100 ms50 ms 150 ms

Slot Slot

Note: resctl will throw an error if specified slots are not disjoint.

37

Specifying Static Schedules Using resctl

Example: Create two table-driven reservation on core 1 having a
major cycle of 200ms and scheduled alternately every 50ms.

$ resctl -n 100 -c 1 -t table-driven \
-m 200 '[0, 50)' '[100, 150)'
$ resctl -n 101 -c 1 -t table-driven \
-m 200 '[50, 100)' '[150, 200)'

The above results in the following scheduling table:

200 ms0 ms 100 ms50 ms 150 ms

Slot (100) Slot (100)Slot (101) Slot (101)

Caution: resctl will not throw an error if slots across multiple
reservations overlap! 38

Specifying Static Schedules Using resctl

Caution: Reservations can be created with different major cycles,
but care must be taken to ensure that slots do not overlap (up to
the hyperperiod):

$ resctl -n 100 -c 1 -t table-driven \
-m 200 '[0, 50)' '[100, 150)'
$ resctl -n 101 -c 1 -t table-driven \
-m 100 '[50, 100)'

The above results in the same scheduling table as before but takes
up less space in memory.

200 ms0 ms 100 ms50 ms 150 ms

Slot (100) Slot (100)Slot (101) Slot (101)

39

Attaching Tasks to Table-Driven Reservations

• Multiple tasks may be assigned to each table-driven
reservation.

• When scheduled, a table-driven reservation selects the next
process to be dispatched from its ready queue via
round-robin.

• A table-driven reservation with no ready tasks yields the
processor to background tasks when scheduled.

40

Creating Table-driven Reservations

Hands-On Demo: Create three table-driven reservations (on
core 1) with major cycles of 200ms and non-overlapping slots:

$ resctl -n 100 -c 1 -t table-driven \
-m 200 '[0, 50)' '[100, 150)'

$ resctl -n 101 -c 1 -t table-driven \
-m 200 '[50, 100)'

$ resctl -n 102 -c 1 -t table-driven \
-m 200 '[150, 200)'

41

Creating Table-Driven Reservations

Hands-On Demo: Attach a process into our previously created
reservation (ID 100) on core 1.

$ yes > /dev/null &
$ resctl -a `pidof yes` -r 100 -c 1

Running top on a new tab shows that the CPU usage of yes is
capped at 50%.

42

Coordinating Task Activations in Table-Driven Reservations

Coordinating Task Activations: Can ensure that a periodic task
assigned to a table-driven reservation always wakes up at the
beginning of each scheduling slot.

• The LITMUSRT kernel’s notion of time is CLOCK_MONOTONIC.
• Can use clock_nanosleep() to time wake-ups precisely to

the start of time slots.

43

Deleting Reservations

Currently, there is no way to delete individual reservations.

Easy way to delete all reservations: switch plugin to Linux and
all reservations are destroyed.

$ setsched Linux
All reservations destroyed

44

Using liblitmus

liblitmus in Two Examples

liblitmus provides a C language API for interacting with
LITMUSRT in order to build custom real-time tasks.

We demonstrate its usage by explaining two simple examples:

• A periodic task (example_periodic.c)
• An event-driven task (example_event.c)

Available in the /opt/tutorial/ folder (along with a Makefile
and README explaining how to use them).

45

Periodic Task with liblitmus

The liblitmus API is available via the litmus.h header.

#include <litmus.h>

46

Periodic Task with liblitmus

LITMUSRT calls may fail at runtime and error checking is highly
recommended. We define a simple macro to help with this.

#define CALL(exp) do { \
int ret; \
ret = exp; \
if (ret != 0) \

fprintf(stderr, "%s␣failed:␣%m\n", #exp); \
else \

fprintf(stderr, "%s␣ok.\n", #exp); \
} while(0)

47

Periodic Task with liblitmus

Our periodic task simply increments a global counter to 10 before
signaling an exit condition.

int i = 0;
int job(void)
{

i++;
if (i >= 10)

return 1;
return 0;

}

48

Periodic Task with liblitmus

In our main() function, the param variable of type
struct rt_task will hold all information related to this task
relevant to the kernel.

int main()
{

int do_exit;
struct rt_task params;

49

Periodic Task with liblitmus

We must always start by calling init_litmus() in order to
initialize liblitmus correctly.

CALL(init_litmus());

50

Periodic Task with liblitmus

We now fill up the task parameters in the params variable.

#define PERIOD ms2ns(1000)
#define DEADLINE ms2ns(1000)
#define EXEC_COST ms2ns(50)
...
init_rt_task_param(¶ms);
params.exec_cost = EXEC_COST;
params.period = PERIOD;
params.relative_deadline = DEADLINE;

Now we simply communicate these to the kernel:

CALL(set_rt_task_param(gettid(), ¶ms));

51

Periodic Task with liblitmus

Processes begin as background processes in LITMUSRT. We need
to “transition” them to real-time tasks using the task_mode()
function.

CALL(task_mode(LITMUS_RT_TASK));

The process in now real-time. However, we might wish to wait for a
synchronous release signal. This is achieved with the following line:

CALL(wait_for_ts_release());

52

Periodic Task with liblitmus

We now write the main loop.

do {
sleep_next_period();
do_exit = job();

} while(!do_exit);

The key is the sleep_next_period() function call which ensures
that the job function is invoked only once per period.

Our job function returns the exit condition for the loop (in our
simple example, this is signaled by returning 1 when the counter
reaches 10)

53

Periodic Task with liblitmus

Once the loop is complete, we transition back to background mode
and exit.

CALL(task_mode(LITMUS_RT_TASK));
return 0;

}

54

Event-Driven Task with liblitmus

Almost identical to the periodic example with some minor changes.

The main difference is that we do not call sleep_next_period()
in the loop.

...
do {

do_exit = job();
} while(!do_exit);
...

55

Event-Driven Task with liblitmus

Instead, the task simply blocks on the file descriptor from which it
receives input events (STDIN in this case).

We do this by calling read() at the beginning of each job.
int job(void) {

int ret;
char buffer[80];

ret = read(STDIN_FILENO , buffer, sizeof(buffer));
buffer[ret] = '\0';

/* Strip the trailing newline */
if (buffer[ret - 1] == '\n')

buffer[ret - 1] = '\0';
56

Event-Driven Task with liblitmus

When an event is triggered, read() unblocks and the ”event” is
made available to the job, which prints the message unless it
receives the word ’exit’.

if (strcmp(buffer, "exit") == 0)
return 1;

else {
printf("%s\n", buffer);
return 0;

}
}

57

Linking Against liblitmus

Included in the folder is a minimal Makefile to link the above two
examples against liblitmus.

We simply include config.makefile at the top of our Makefile
to link against liblitmus. (The LIBLITMUS environment variable
holds the path to liblitmus).

include ${LIBLITMUS}/inc/config.makefile

At the end of the Makefile, we simply include depend.makefile
to allow dependency tracking.

include ${LIBLITMUS}/inc/depend.makefile

58

Tracing with Feather-Trace

Feather-Trace: Overview

Feather-Trace allows us to trace and process various system
overheads.

Generic framework that allows adding arbitrary trace points in the
kernel statically at compile time (not covered in this tutorial).

59

ft_trace: Overview

What traces are available under Feather-Trace?

• Scheduling overhead
• Post-scheduling overhead
• Context switch overhead
• Task release latency
• Synchronization overheads
• Re-schedule IPI overhead

60

Demo: Overhead Tracing

Hands-On Demo: Record scheduler traces and retrieve various
overhead statistics.

Create a new working directory for this demo:
$ mkdir /sandbox/ft-demo
$ cd /sandbox/ft-demo

61

FeatherTrace: Tracing with ft-trace-overheads

1. Start recording traces.
$ ft-trace-overheads my-trace

[II] Recording /dev/litmus/ft_cpu_trace0 -> overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0.bin
[II] Recording /dev/litmus/ft_cpu_trace1 -> overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1.bin
[II] Recording /dev/litmus/ft_msg_trace0 -> overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_msg=0.bin
[II] Recording /dev/litmus/ft_msg_trace1 -> overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_msg=1.bin
Press Enter to end tracing...

62

FeatherTrace: Tracing with ft-trace-overheads

Launch and release some tasks:
$ rtspin -w 10 100 5 &
[1] 4063
$ rtspin -w 10 100 5 &
[2] 4064
$ rtspin -w 10 100 5 &
[3] 4065
$ rtspin -w 10 100 5 &
[4] 4066
$ release_ts
Released 4 real-time tasks.

63

FeatherTrace: Tracing with ft-trace-overheads

Stop recording: Press ENTER on ft-trace-schedule

Ending Trace...
Disabling 18 events.
Disabling 4 events.
Disabling 4 events.
Disabling 18 events.
/dev/litmus/ft_cpu_trace1: 359664 bytes read.
/dev/litmus/ft_msg_trace0: 400 bytes read.
/dev/litmus/ft_msg_trace1: 1248 bytes read.
/dev/litmus/ft_cpu_trace0: 500752 bytes read.

64

FeatherTrace: Tracing with ft-trace-overheads

The result is a bunch of binary-format files that basically contain a
huge array of individual packed samples:

ls *.bin
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0.bin
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1.bin
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_msg=0.bin
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_msg=1.bin

65

Post-Processing FeatherTrace Records

Post-processing in FeatherTrace is a bit more involved, but easy
with the scripts available with LITMUSRT.

• Sorting traces
• Extracting overhead samples from trace files
• Extracting simple statistics (e.g., observed median, mean, and

maximum values).

We will walk through these step-by-step.

66

Post-Processing: Sorting Traces

Sorts all records by sequence number (may be out-of-order).
$ ft-sort-traces overheads_*.bin 2>&1 \

| tee -a overhead-processing.log

* We recommend using tee as shown above to log all operations.
...
[2/4] Sorting overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1.bin
Total : 22479
Holes : 0
Reordered : 0
Non-monotonic : 0
Seq. constraint : 0
Implausible : 0
Size : 0.34 Mb
Time : 0.00 s
Throughput : 79.03 Mb/s
...

67

Post-Processing: Extract Samples

ft-extract-samples extracts all samples from overhead files.
$ ft-extract-samples overheads_*.bin 2>&1 \

| tee -a overhead-processing.log

Note: ft-extract-samples automatically discards samples that
were disturbed by interrupts (these samples have a flag set).

68

Post-Processing: Extract Samples

Output: NumPy-compatible files (ending in .float32) containing
an array of samples for each type of trace. Allows faster processing
of data (compared to the CSV format) via memory mapping.
ls *.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0_overhead=CXS.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0_overhead=RELEASE.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0_overhead=RELEASE-LATENCY.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0_overhead=SCHED.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=0_overhead=SCHED2.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_msg=0_overhead=SEND-RESCHED.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1_overhead=CXS.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1_overhead=RELEASE.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1_overhead=RELEASE-LATENCY.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1_overhead=SCHED.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_cpu=1_overhead=SCHED2.float32
overheads_host=litmus_scheduler=GSN-EDF_trace=my-trace_msg=1_overhead=SEND-RESCHED.float32

69

Post-Processing: Compute Statistics

Now we can simply compute statistics for each
$ ft-compute-stats overheads_*.float32 > stats.csv

Plugin, #cores, Overhead, Unit, #tasks, #samples, max, 99.9th perc,...
GSN-EDF, *, CXS, cycles, *, 106, 10950.00000, 10895.92500,...
GSN-EDF, *, RELEASE, cycles, *, 1403, 274350.00000, 203814.84200,...
GSN-EDF, *, SCHED2, cycles, *, 108, 620.00000, 617.32500,...
GSN-EDF, *, SCHED, cycles, *, 108, 29892.00000, 29813.78300,...
...

70

Post-Processing: Comparing Results

To compare results from two or more experiments, we additionally
need to do the following steps.

• Merging data files for further processing.
• Counting how many events of each type were recorded.
• Shuffling and truncating all sample files (un-biasing).

71

Post-Processing: Combine Traces From All Cores

ft-combine-samples combines files based on key-value naming
convention.

The --std option combines files with different task counts,
utilizations, for all sequence numbers and CPU IDs.
$ ft-combine-samples --std overheads_*.float32 2>&1 \

| tee -a overhead-processing.log

72

Post-Processing: Counting Samples, Un-biasing Data

For each overhead type, ft-count-samples determines the
minimum number of samples recorded.

Counts used to un-bias data using ft-select-samples.
$ ft-count-samples combined-overheads_*.float32 \

> counts.csv

We now un-bias data by randomly selecting the same number of
samples for all compared traces. (shuffle + truncate)
$ ft-select-samples \

counts.csv combined-overheads_*.float32 2>&1 \
| tee -a overhead-processing.log

73

Where to go from here?

73

Further Resources

Project homepage

https://litmus-rt.org

Mailing list:

https://wiki.litmus-rt.org/litmus/Mailinglist

Design and implementation:

http://www.cs.unc.edu/~bbb/diss/brandenburg-diss.pdf

Manual:

http://litmus-rt.org/tutorial/manual.html

74

https://litmus-rt.org
https://wiki.litmus-rt.org/litmus/Mailinglist
http://www.cs.unc.edu/~bbb/diss/brandenburg-diss.pdf
http://litmus-rt.org/tutorial/manual.html

	Preliminaries
	A Whirlwind Tour of LITMUSRT
	Synchronous Release
	Tracing and Visualizing Schedules
	Working with Reservations
	Table-Driven Reservations
	Using liblitmus
	Tracing with Feather-Trace

